A NUMERICAL NOTE ON UPPER BOUNDS FOR B 2 [g] SETS
Résumé
Sidon sets are those sets such that the sums of two of its elements never coincide. They go back to the 30s when Sidon asked for the maximal size of a subset of consecutive integers with that property. This question is now answered in a satisfactory way. Their natural generalization, called B 2 [g] sets and defined by the fact that there are at most g ways (up to reordering the summands) to represent a given integer as a sum of two elements of the set, are much more difficult to handle and not as well understood. In this article, using a numerical approach, we improve the best upper estimates on the size of a B 2 [g] set in an interval of integers in the cases g = 2, 3, 4 and 5.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...