A data augmentation scheme embedding a sequential Monte Carlo method for Bayesian parameter inference in state space models - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

A data augmentation scheme embedding a sequential Monte Carlo method for Bayesian parameter inference in state space models

Résumé

State space models (SSMs) are successfully used in many areas of science to describe time series and/or dynamical systems. In this work, we revisit the data augmentation algorithm introduced by Tanner and Wong (1987) for bayesian parameter estimation in SSMs. We propose to employ sequential Monte-Carlo and adaptive Monte-Carlo Markov chain methods to improve the performance of the algorithm. We provide a first numerical example that allows us to evaluate the convergence of the posterior estimate to the true posterior distribution. Our objective is to evaluate the performance of the proposed method to nonlinear/non-Gaussian models, with a special interest to plant growth models.
Fichier principal
Vignette du fichier
sfds_irene.pdf (200.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01355334 , version 1 (23-08-2016)

Identifiants

  • HAL Id : hal-01355334 , version 1

Citer

Irene Votsi, Paul-Henry Cournède. A data augmentation scheme embedding a sequential Monte Carlo method for Bayesian parameter inference in state space models. 48èmes Journées de Statistique de la SFdS, May 2016, Montpellier, France. ⟨hal-01355334⟩
175 Consultations
88 Téléchargements

Partager

More