Analysis of the Propagation Time of a Rumour in Large-scale Distributed Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Analysis of the Propagation Time of a Rumour in Large-scale Distributed Systems

Résumé

The context of this work is the well studied dissemination of information in large scale distributed networks through pairwise interactions. This problem, originally called rumor mongering, and then rumor spreading has mainly been investigated in the synchronous model. This model relies on the assumption that all the nodes of the network act in synchrony, that is, at each round of the protocol, each node is allowed to contact a random neighbor. In this paper, we drop this assumption under the argument that it is not realistic in large scale systems. We thus consider the asynchronous variant, where at time unit, a single node interacts with a randomly chosen neighbor. We perform a thorough study of Tn the total number of interactions needed for all the n nodes of the network to discover the rumor. While most of the existing results involve huge constants that do not allow for comparing different protocols, we prove that in a complete graph of size n ≥ 2, the probability that Tn > k for all k ≥ 1 is less than 1 + 2k(n−2) 2 n 1 − 2 n (k−1). We also study the behavior of the complementary distribution of Tn at point cE(Tn) when n tends to infinity for c = 1. We end our analysis by conjecturing that when n tends to infinity, Tn > E(Tn) with probability close to 0.4484.
Fichier principal
Vignette du fichier
main.pdf (358.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01354815 , version 1 (19-08-2016)
hal-01354815 , version 2 (16-11-2016)
hal-01354815 , version 3 (07-03-2017)

Identifiants

Citer

Yves Mocquard, Bruno Sericola, Samantha Robert, Emmanuelle Anceaume. Analysis of the Propagation Time of a Rumour in Large-scale Distributed Systems. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA), Oct 2016, Cambridge, United States. ⟨10.1109/nca.2016.7778629⟩. ⟨hal-01354815v3⟩
690 Consultations
412 Téléchargements

Altmetric

Partager

More