PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars - Archive ouverte HAL
Article Dans Une Revue Atmospheric environment Année : 2016

PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars

Résumé

Although implementing Diesel particulate filters (DPF) and other novel aftertreatment technologies makes it possible to achieve significant reductions in particle mass emissions, it may induce the release of ultrafine particles and emissions of many other unregulated compounds. This paper focuses on (i) ultrafine particles, black carbon, BTEX, PAH, carbonyl compounds, and NO2 emissions from Euro 4 and Euro 5 Diesel and gasoline passenger cars, (ii) the influence of driving conditions (e.g., cold start, urban, rural and motorway conditions), and (iii) the impact of additive and catalysed DPF devices on vehicle emissions. Chassis dynamometer tests were conducted on four Euro 5 vehicles and two Euro 4 vehicles: gasoline vehicles with and without direct injection system and Diesel vehicles equipped with additive and catalysed particulate filters. The results showed that compared to hot-start cycles, cold-start urban cycles increased all pollutant emissions by a factor of two. The sole exception was NO2, which was reduced by a factor of 1.3e6. Particulate and black carbon emissions from the gasoline engines were significantly higher than those from the Diesel engines equipped with DPF. Moreover, the catalysed DPF emitted about 3e10 times more carbonyl compounds and particles than additive DPF, respectively, during urban driving cycles, while the additive DPF vehicles emitted 2 and 5 times more BTEX and carbonyl compounds during motorway driving cycles. Regarding particle number distribution, the motorway driving cycle induced the emission of particles smaller in diameter (mode at 15 nm) than the urban cold-start cycle (mode at 80e100 nm). The results showed a clear positive correlation between particle, black carbon, and BTEX emissions, and a negative correlation between particles and NO2.
Fichier non déposé

Dates et versions

hal-01354351 , version 1 (18-08-2016)

Identifiants

Citer

Cédric Louis, Yao Liu, Patrick Tassel, Pascal Perret, Agnès Chaumond, et al.. PAH, BTEX, carbonyl compound, black-carbon, NO2 and ultrafine particle dynamometer bench emissions for Euro 4 and Euro 5 diesel and gasoline passenger cars. Atmospheric environment, 2016, 141, pp. 80-95. ⟨10.1016/j.atmosenv.2016.06.055⟩. ⟨hal-01354351⟩
107 Consultations
0 Téléchargements

Altmetric

Partager

More