Cohesive Co-Evolution Patterns in Dynamic Attributed Graphs
Résumé
We focus on the discovery of interesting patterns in dynamic attributed graphs. To this end, we define the novel problem of mining cohesive co-evolution patterns. Briefly speaking, cohesive co-evolution patterns are tri-sets of vertices, timestamps, and signed attributes that describe the local co-evolutions of similar vertices at several timestamps according to set of signed attributes that express attributes trends. We design the first algorithm to mine the complete set of cohesive co-evolution patterns in a dynamic graph. Some experiments performed on both synthetic and real-world datasets demonstrate that our algorithm enables to discover relevant patterns in a feasible time.