Convergent algorithm based on Carleman estimates for the recovery of a potential in the wave equation.
Résumé
This article develops the numerical and theoretical study of the reconstruction algorithm of a potential in a wave equation from boundary measurements, using a cost functional built on weighted energy terms coming from a Carleman estimate. More precisely, this inverse problem for the wave equation consists in the determination of an unknown time-independent potential from a single measurement of the Neumann derivative of the solution on a part of the boundary. While its uniqueness and stability properties are already well known and studied, a constructive and globally convergent algorithm based on Carleman estimates for the wave operator was recently proposed in [BdBE13]. However, the numerical implementation of this strategy still presents several challenges, that we propose to address here.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...