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CONVERGENT ALGORITHM BASED ON CARLEMAN ESTIMATES
FOR THE RECOVERY OF A POTENTIAL IN THE WAVE
EQUATION.*

LUCIE BAUDOUINT, MAYA DE BUHAN?!, AND SYLVAIN ERVEDOZAS

Abstract. This article develops the numerical and theoretical study of the reconstruction
algorithm of a potential in a wave equation from boundary measurements, using a cost functional built
on weighted energy terms coming from a Carleman estimate. More precisely, this inverse problem
for the wave equation consists in the determination of an unknown time-independent potential from
a single measurement of the Neumann derivative of the solution on a part of the boundary. While its
uniqueness and stability properties are already well known and studied, a constructive and globally
convergent algorithm based on Carleman estimates for the wave operator was recently proposed in
[BABE13]. However, the numerical implementation of this strategy still presents several challenges,
that we propose to address here.

Key words. wave equation, inverse problem, reconstruction, Carleman estimates.

AMS subject classifications. 93B07, 93C20, 35R30.

1. Introduction and algorithms.

1.1. Setting and previous results. Let 2 be a smooth bounded domain of
R?, d > 1 and T > 0. This article focuses on the reconstruction of the potential in a
wave equation according to the following inverse problem:

Given the source terms f and fy and the initial data (wp,w), con-
sidering the solution of

W — AW + QW = f, in (0,T) x Q,
(1) W = fo, on (0,T) x 09,
W(O) = Wy, 8tW(0) = w1, in s

can we determine the unknown potential @ = Q(z), assumed to
depend only on z € €, from the additional knowledge of the flux of
the solution through a part I'y of the boundary 02, namely

(2) M =0,W, on(0,T)xTy?

Beyond the preliminary questions about the uniqueness and stability of this inverse
problem, already very well documented as we will detail below, we are interested in
the actual reconstruction of the potential @) from the extra information given by the
measurement of the flux .# of the solution on a part of the boundary. This issue was
already addressed theoretically in our previous work [BdBE13] based on Carleman
estimates. However, the algorithm proposed in [BABE13], proved to be convergent,
cannot be implemented in practice as it involves minimization processes of function-
als containing too large exponential terms. Therefore, our goal is to address here the
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2 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

numerical challenges induced by that approach.

Before going further, let us recall that if Q € L>(Q), f € LY(0,T;L*(Q)),
fo € HY((0,T) x 89), wo € HY(Q) and wy; € L*(), and assuming the compati-
bility condition f5(0, ) = wg(z) for all z € 99, the Cauchy problem (1) is well-posed
in C°([0, T); HY(2))NC*([0, T); L3(£2)), and the normal derivative 9, W is well-defined
as an element of L2((0,7T) x 99), see e.g. [Lio88, LLT86].

Our results will require the following geometric conditions (sometimes called “mul-
tiplier condition” or “T'-condition”):
Jzg & Q, such that
(3) Ty D {x €09, (z— ) 7i(z) >0},
(4) T > sup |z — xo].
€

Space and time conditions (3)—(4) are natural from the observability point of view, and
appear naturally in the context of the multiplier techniques developed in [Ho86, Lio88].
They are more restrictive than the well-known observability results [BLR92] by Bar-
dos Lebeau Rauch based on the behavior of the rays of geometric optics, but the
geometric conditions (3)—(4) yield much more robust results, and this will be of pri-
mary importance in our approach.

In fact, under the regularity assumption
() W e H'(0,T; L)),
the positivity condition
(6) Joa > 0 such that |wg| > a in Q,
the knowledge of an a priori bound m > 0 such that
0 Qi S e Q€ L (@) = {g € LX), gl ~(0) < m},

and the multiplier conditions (3)—(4), the results in [Baufr] (and in [Yam99] under
more regularity hypothesis) state the Lipschitz stability of the inverse problem con-
sisting in the determination of the potential @ in (1) from the measurement of the

flux 4 in (2).

We will introduce our work by describing what was done in our former article
[BABE13], in order to highlight stage by stage the main challenges when performing
numerical implementations.

In [BABE13], we proposed a prospective algorithm to recover the potential @ from
the measurement .# on (0,7) x I'g, that we briefly recall below. We assume that
conditions (3)—(4) are satisfied for some z¢ ¢ 2, and we set 3 € (0,1) such that

(8) BT > sup |z — xo|.
€N

We then define, for (t,z) € (=T,T) x Q, the Carleman weight functions

(9) o(t,z) = |x —xo|? — Bt2, and for A >0, (t,z) = MNPED+C0),

This manuscript is for review purposes only.
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RECOVERY OF A POTENTIAL IN THE WAVE EQUATION. 3

where Cy > 0 is chosen such that ¢ + Cy > 1 in (—T,7T) x © and A > 0 is large
enough. The chore of the algorithm in [BABE13] is the minimization of a functional
K 4[p] given for s >0, ¢ € LS, () and p € L*((0,T) x T'o) by

1 /7 T
(10) K, qlpl(z) = f/ /e2sw|8fz—Az+qz\2dxdt+f/ / e2¥|0p 2 — p|? dodt,
2Jo Ja 2Jo Jro

set on the trajectories z € L2(0,T; H}(2)) such that 82z — Az + gz € L*((0,T) x Q),
Onz € L?((0,T) x T'g) and 2(0,-) = 0 in Q. Note in particular that [BABE13] shows
that there exists a unique minimizer of the above functional under the aforementioned
assumptions. The algorithm then reads as follows:

Algorithm 1 (see [BABE13])

Initialization: ¢° =0 (or any guess in L, (2)).

Iteration: From k to k +1 -

e Step 1 - Given ¢*, we set ¥ = 9, (9,w[g*] — 0,W[Q]) on (0,T) x Ty, where wlg¥]
denotes the solution of (1) with the potential ¢* and 9, W[Q)] is the measurement
given in (2).

e Step 2 - Minimize K ,[1*] (defined in (10)) on the trajectories z € L2(0,T’; Hg(€2))
such that 02z — Az +¢*2 € L*((0,T) xQ), 9,z € L?>((0,T) x T'y) and 2(0,-) = 0 in .
Let Z* be the unique minimizer of the functional K .« [1].

e Step 3 - Set

_ nZk(0
k1 _ gk O (0)

q in
Wo

) )

where wyq is the initial condition in (1) (recall assumption (6)).
e Step 4 - Finally, set

] <m
L — 1 (Y, with To(q) = { @ Zf|q| >m,
q (@) (q) sign(q)m, if |q| > m,

where m is the a priori bound in (7).

Algorithm 1 comes along with the following convergence result:

THEOREM 1 ([BABEL3, Theorem 1.5]). Under assumptions (3)-(4)-(5)-(6)-(7)-
(8), there exist constants C > 0, sg > 0 and A > 0 such that for all s > sq, Algorithm
1 is well-defined and the iterates q* constructed by Algorithm 1 satisfy, for all k € N,

s CHW[Q]”?‘II 0,T;L>° (2 s
(11) /S; |qk+1 _ Q‘2€2 (0) dx S 81/2é£ ) (2)) /Q |qk _ Q|2€2 1(0) dz.

In particular, for s large enough, the sequence q* strongly converges towards Q as
k — oo in L?(Q).

This algorithm presents the advantage of being convergent for any initial guess ¢° €
L () without any a priori guess except for the knowledge of m. This is why we
call this algorithm globally convergent. However, while this algorithm is theoretically
satisfactory as at each iteration, it simply consists in the minimization of the strictly
convex and coercive quadratic functional K ,, it nevertheless contains several flaws
and drawbacks in its numerical implementation. In particular, we underline that the
functional K , involves two exponentials, namely

exp(sy) = exp(sexp(A(¢ + Co))),

This manuscript is for review purposes only.
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4 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

with a choice of parameters s and A large enough and whose sizes are difficult to
estimate. In particular, for s = A = 3 - which are not so large of course - Q = (0, 1),
29 ~0", T ~1% and B ~ 17, the ratio

(O{g§t§ﬂ{exr>(2s¢)}

i 2
(o hin Jrexp(2sy)}

is of the order of 103 ! The numerical implementation of Algorithm 1 therefore
seems doomed.

The goal of this article is to improve the above algorithm so that it can fruitfully be
implemented. This will be achieved following several stages: working on the construc-
tion of the cost functional (specifically on the Carleman weight function), considering
the preconditioning of the cost functional, and adapting the new cost functional to
the discrete setting used for the numerics.

Before going further, let us mention that the inverse problem under consideration
has been well-studied in the literature, starting with the uniqueness result in the
celebrated article [BK81], see also [Kli92], which introduced the use of Carleman
estimates for these studies. Later on, stability issues were obtained for the wave
equation, first based on the so-called observability properties of the wave equation
[PY96, PY97] and then refined with the use of Carleman estimates, among which
[[YOla, TYO1b, IY03, KY06]. In fact, a great part of the literature in this area, con-
cerning uniqueness, stability and reconstruction of coefficient inverse problems for
evolution partial differential equations can be found in the survey article [K1i13] and
we refer the interested reader to it. A slightly different approach can also be found in
the recent article [SU13] based on more geometric insights.

Let us also emphasize that we are interested in the case in which one performs only
one measurement. The question of determining coefficients from the Dirichlet to
Neumann map is different and we refer for instance to the boundary control method
proposed in [Bel97] or to methods based on the complex geometric optics, see [[sa91].
Here, as we said, we will focus on the reconstruction of the potential in the wave equa-
tion (1) from the flux .# in (2). This question has been studied only recently, though
the first investigation [KI95] appears in 1995, and we shall in particular point out
the most recent works of Beilina and Klibanov [KB12], [BK15], who study the recon-
struction of a coefficient in a hyperbolic equation from the use of a Carleman weight
function for the design of the cost functional. However, these techniques differ from
ours as they work on the functions obtained after a Laplace transform of the equation.

In what follows, we propose to develop a numerical algorithm in the spirit of
the one in [BABE13], study its convergence and his implementation. Before going
further, let us also mention the fact that one can find in [CFCM13] some numerical
experiments based on the minimization of a quadratic functional similar to the one in
(10), but with s and A rather small, namely s = 1 and A = 0.1, see [CFCM13, Section
4]. Our goal is to overcome this restriction on the size of the Carleman parameters,
as we request them to be large for the convergence of the algorithm.

1.2. New weight functions, new cost functionals, and a new algorithm.
In a first stage, we aim at removing one exponential from the cost functional K , in
(10). Similarly to [BABE13], looking again for a cost functional based on a Carleman
estimate for the wave equation, we will work with the Carleman weight function

This manuscript is for review purposes only.
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RECOVERY OF A POTENTIAL IN THE WAVE EQUATION. 5

exp(sy) instead of exp(sexp(A(p + Cp))). This requires an adaptation of the proof
of [BABE13] with such a weight function and the use of the Carleman estimates
developed in [LRS86] (see also [IY01D]), that we will briefly recall in Section 2.

In particular, instead of minimizing K ,[u] introduced in (10) as in Step 2 of
Algorithm 1, we will perform a minimization process on a new functional Js 4[f],
to be defined later in (13), based on the simplified weight function exp(sy). Before
introducing that functional, we shall define the following restricted set O:

(12) O ={(t,z) € (0,T) x Q, Bt > |z — zo|}
={(t,z) € (0,T) x Q, |Oep(t,z)| = |Veo(t,z)[},

which is depicted in Figure 1.

t
T::'

To 0

Fig. 1: Tllustration of domain O in the case = (0, 1).

For s > 0, ¢ € L*(2) and 1 € L*((0,T) x I'y), we then introduce the functional
Js qlt] defined by

1 T
(13)  Jsqlfl(2) = 5/0 /Qem|a§z—Az+qz|2dxdt

T 3
42 e**?|0, 2 — fi|* dodt + Gl e**?|2|? dxdt,
2 2
0o Jro o

to be compared with K; ,[u] in (10), on the trajectories z € C°([0,7]; H} () N
CH([0,T]; L*(Q)) such that 87z — Az + gz € L*((0,T) x Q) and 2(0,-) = 0 in Q.
This functional J; 4[] is quadratic, and as we will show later in Section 2.3, under
conditions (3)—(4)—(8), it is strictly convex and coercive, therefore enjoying similar
properties as the functional K, ,{u|. Nevertheless, let us once more emphasize that
the functional J, 4[fi] is less stiff than the functional K 4[u] as now the weights are of
the form exp(2s¢p) instead of exp(2s1)) = exp(2sexp(A(¢+Cp))) in (10). This already
indicates the possible gain we could have by working with the functional J 4[] in
(13) instead of K 4[p] in (10).

It may appear surprising to note i instead of u. These slightly different notations
come from the fact that the functional K 4[u] tries to find an optimal solution Z of

027 - ANZ+qZ~0in (0,T)xQ, and 9,2~ pin (0,T) x Ty,

This manuscript is for review purposes only.
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6 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

while the functional J, ,[fi] tries to find an optimal solution Z of
022 —ANZ+qZ~0in (0,T)xQ, 8,Z~pin (0,T)xTy, and Z~0in O.

Therefore, as Z is sought after such that it is small in O, it is natural to introduce a
smooth cut-off function n € C?(R) such that 0 <7 < 1 and

(14) n(r)=0,if7<0, and n(r)=1, if 7> dj = d(zo, Q)
(recall that d3 > 0 according to Assumption 3) see Figure 2. Next, the idea is that if
i =n(p)p, in (0,7) x Io.

and if Z denotes the minimizer of the functional K 4[] in (10), then the minimizer
Z of J, 4li1] in (13) should be close to n(p)Z in (0,7) x £ and in particular at ¢ = 0
this should yield, due to the choice of n in (14), 8;Z(0) ~ 8;Z(0) in Q.

T n T

0.5 T

o

20 0 02 04 06 08 1 0 3 g 0 0 Q 1

Fig. 2: Isovalues of the function ¢ (xg = —0.2, 8 = 1). Definition and application of
the cut-off function 7.

We are then led to propose a revised version of our reconstruction algorithm,
detailed in Algorithm 2 given below.

Of course, if one compares Algorithm 2 with Algorithm 1, the major difference
is in Step 2 in which one minimizes the functional J ,«[fi] in (13) instead of the
functional K j«[u] in (10). And as we have said above, the two functionals should
have minimizers that are close at ¢ = 0. In fact, similarly as Theorem 1, we will obtain
the following result:

THEOREM 2. Under assumptions (3)-(4)-(5)-(6)-(7)-(8), there exist positive con-
stants C' and sg such that for all s > sg, Algorithm 2 is well-defined and the iterates
q* constructed by Algorithm 2 satisfy, for all k € N,

CIWIQII (o7
) [ i - e p < DAy [ gpeioso g,
Q s12a o

In particular, for s large enough, the sequence ¢ strongly converges towards @Q as
k — oo in L?(Q).

The proof of Theorem 2 is given in Section 2 and closely follows the one of Theorem 1
in [BABE13]. The main difference is that the starting point of our analysis, instead

This manuscript is for review purposes only.
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Algorithm 2

Initialization: ¢° =0 (or any guess ¢° € L, (Q)).

Iteration: From k to k + 1 B

e Step 1 - Given ¢, we set i* = n(¢)9; (9,w[g*] — 0,W|[Q]) on (0,T) x 'y, where
w[g¥] denotes the solution of

2w — Aw + ¢*w = f, in (0,7) x Q,
(15) w = fa, on (0,T) x 09,
w(0) = wp, w(0) =w;, in Q,

corresponding to (1) with the potential ¢* and 9, W|Q)] is the measurement in (2).
e Step 2 - We minimize the functional J, ,«[ii*] defined in (13), for some s > 0
that will be chosen independently of k, on the trajectories 2 € C°([-T,T]; H}(Q)) N
CY([~T,TJ]; L*(Q)) such that 02z — Az +¢*z € L2((0,T) x Q), Oz € L2((0,T) x Ty)
and z(0,-) = 0 in €. Let Z* be the unique minimizer of the functional Jg.q+ [11¥].

e Step 3 - Set

8, Z%(0
(16) =g+ 220 g
Wo
where wy is the initial condition in (15) (or (1)).
e Step 4 - Finally, set
- . ; if lg <m,
=@ i T = { S, o

where m is the a priori bound in (7).

of being the Carleman estimate in [Im02], is the Carleman estimate in [LRS86].

The main improvement with respect to Algorithm 1 is the fact that the functional
Jsqlf1] in (13) contains weight functions with only one exponential, making the prob-
lem less difficult to implement. However, it is still numerically challenging to use
such functionals, especially as the convergence of Algorithm 2 gets better for large
parameter s. We propose below two ideas to make it numerically tractable.

1.3. Preconditioning, processing and discretizing the cost functional.
When considering the functional J, 4[fi] in (13), one easily sees that exponentials
factors can be removed if considering the unknown ze®¥ instead of z. Such transfor-
mation corresponds to a preconditioning of the functional J; 4[f]. Indeed, that way,
exponential factors do not appear anymore when computing the gradient of the cost
functional Js 4[f1]. Nevertheless, there are still exponentials factors appearing in the
measurements. We therefore also develop a progressive algorithm in the resolution of
the minimization process. The idea is to consider intervals in which the weight func-
tion ¢ does not significantly change, allowing to preserve numerical accuracy despite
the possible large values of s. Details will be given in Section 3.

When implementing the above strategy numerically, one has to discretize the
wave equation under consideration, and to adapt the functional J; 4[] to the discrete
setting. As it is well-known [Tre82, Zua05], most of the numerical schemes exhibit
some pathologies at high-frequency, namely discrete rays propagating at velocity 0 or

This manuscript is for review purposes only.
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8 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

blow up of observability estimates. Therefore, we need to take some care to adapt the
functional J; 4[fi] to the discrete setting. In particular, following ideas well-developed
in the context of the observability of discrete waves (see [Zua05]), we will introduce a
naive discrete version of J ,[fi] and penalize the high-frequencies.

To simplify the presentation of these penalized frequency functionals, we will introduce
it in full details on a space semi-discrete and time continuous 1d wave equations, where
the space semi-discretization is done using the finite-difference method on a uniform
mesh. In this case, our approach, even at the discrete level, can be made completely
rigorous by adapting the arguments in the continuous setting and the discrete Carle-
man estimates obtained in [BE11] (recently extended to a multi-dimensional setting
in [BEO15]). We refer to Section 4 for extensive details.

Section 5 then presents numerical results illustrating our method on several ex-
amples. In particular, we will illustrate the good convergence of the algorithm when
the parameter s is large. We shall also discuss the cases in which the measurement
is blurred by some noise and the case in which the initial datum wyq is not positive
everywhere.

Outline. Section 2 is devoted to the proof of the convergence of Algorithm 2. In
Section 3 we explain how the minimization process of the functional J, , in (13) can
be strongly simplified. Section 4 then makes precise the new difficulties arising when
discretizing the functional J, 4, and Section 5 presents several numerical experiments.

2. Study of Algorithm 2.

2.1. Main ingredients. The goal of this section is to prove Theorem 2. As
mentioned in the introduction, the proof will closely follows the one of Theorem 1
n [BABE13]. The main difference is that, instead of using the Carleman estimate
developed in [Im02, Baufr], we will base our proof on the following one:

THEOREM 3. Assume the multiplier conditions (3)-(4) and 8 € (0,1) as in (8).
Define the weight function ¢ as in (9). Then there exist so > 0 and a positive constant
M such that for all s > sq:

T T
(18) s/ / e (|02 + |V 2> + §%|2]?) dadt < M/ / e*?|02 2 — Az|? dadt
-TJo

—|—Ms/ / 25210, 2|° dodt + Ms® // 23“’\z|2dxdt,
To (Itl=)

for all z € CO([-T,T); Hy(Q))NCY([-T,T]; L*(Q)) with 0?2 — Az € L*>((-T,T) xQ),
where the set O satisfies (12).

Furthermore, if z(0,-) = 0in Q, one can add to the left hand-side of (18), the following
term:

(19) 51/2/ e?*2(9)19,2(0)|? da.
Q

The Carleman estimate of Theorem 3 is quite classical and can be found in the liter-
ature in several places, among which [LRS86, Isa06, Zha00, FYZ07, Bel08]. For the
convenience of the reader, we briefly sketch the proof in Section 2.2. However, the
proof of the fact that the term (19) can be added in the left hand side of (18) when
2(0,-) = 0 in £ is not explicitly written in the aforementioned references, although

This manuscript is for review purposes only.
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this is one of the important point of the proof of the stability result in [[Y0la, IY01b].
Nevertheless, the idea can be adapted easily from [BABE13], as we will detail below.

Before giving the details of the proof of Theorem 2, let us first briefly explain the
main idea of the design of Algorithm 2, which turns out to be very similar to the one
of Algorithm 1. Indeed, both Algorithms 1 and 2 are constructed from the fact that
if W|[Q)] is the solution of equation (1) and w[g*] solves (15), then

(20) 2 =0, (wlg"] - W(Q])
satisfies

0228 — AZF +gF2k = g%, in (0,T) x Q,
(21) 2k =0, on (0,T) x 09,
2$(0) =0, 0;2%(0) =2F, inQ,

where g* = (Q — ¢*)OW|Q], 2¥ = (Q — ¢*)wo, and we have ¥ = 9,,2* on (0,T) x Tp.

In system (21), the source g¥ and the initial data 2 are both unknown, and
we are actually interested in finding a good approximation of z¥, which encodes the
information on @ — ¢*. In order to do so, we will try to fit “at best” the flux 0,z with
1* on the boundary, approximating the unknown source term g* by 0.

This strategy works as we can prove that the source term ¢* brings less informa-
tion than p* does, and this is where the choice of the Carleman parameter s will play
a crucial role. This is actually the milestone of the construction of Algorithm 1 and
its convergence result [BABE13]. Here, when considering the functional J; ,[n(y)u]
defined in (13), we rather try to approximate 2¥ = 7(y)z*, which enjoys the following
properties:

o 8tz (0,-) = n(¢(0))0:2%(0, ) = (Q—¢*)wy encodes the information on Q —¢*;
= cp)zk vanishes in domain O defined by (12) and on the boundary in
time ¢t =T,
e 0,7% = ji* in (0,T) x .
These ideas are actually behind the proofs of the inverse problem stability by com-
pactness uniqueness arguments as in [PY96, PY97, Yam99] or by Carleman estimates
given in [IY0la, IYO1b, TY03, Baufr].

2.2. Sketch of the proof of the Carleman estimate. Since a lot of different
references, several of them mentioned right above, present detailed proof of Carleman
estimates for the wave equation, we only give here the main calculations yielding the
result presented in Theorem 3.

Proof. Set y(t,x) = z(t, x)e3?®?) for all (t,x) € (—T,T) x ©, and introduce the
conjugate operator .%, defined by Zy = e*9(9? — A)(e~*?y). Easy computations
give

(22) Ly = 8,5231 — Ay + 52(|8tg0\2 — \Vgo|2)y — 250:y0rp + 2sVy - Vo + asy

=Py =Py
— 5(0fp — Ap)y — asy

=Ry

This manuscript is for review purposes only.
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10 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

where we have set « = 2d — 2, d being the space dimension. Based on the estimate

T T T
2/ /PlyngdxdtS/ / (|Pryl? + |Pay|?) dadt + 2/ /Plyngdxdt
-1 Ja T Ja -TJa
T T
(23) < 2/ / \.,styIdedtJrz/ /|Ry|2dxdt,
—TJQ T JQ

the main part of the proof consists in the computation and bound from below of the

cross-term .
-TJQ

Tedious computations and integrations by parts yield
T T
I:s/ / 10:y|%(0Fp + Ap — @) dxdt—l—s/ / |Vy|? (070 — Ap + o + 4) dadt
—_TJQ —-TJQ
T
30 [ [0 [0 @uelionel - 1V6) +aoel = [Vel)
=V - (Ve(lowl* - [Ve*)] dadt

T T
— s [/ (\@y\Q + |Vy|2) 8t<pdm} + 25 [/ Oy (Vy - Vo) dm]

Q — Q -T
T

_ U 210,02 — [V ?)Oe dxr +as U 8tyydx}

— s/ / |0ny|? 0y dodt.

Let us now briefly explain how each term can be estimated.

-T

e We focus on the terms in s|;y|> and s|Vy|? in order to insure that they are
strictly positive. Taking o = 2d — 2, this means

0ip+Ap—a=-28+2d—a=2(1-p8) and
Fo—Ap+a+4=-28-2d+a+4=2(1-p),

that are positive thanks to the assumption 8 € (0, 1).

e The terms in s3|y|? can be rewritten as follows (since VZ¢ = 2Id):

3 (Brp(10e? = IV @) + all0iel? = Vo) = V- (Vo(l0rel* — [Vel?))
= (079 — Ap + a)(|0rp]* — [Vl*) + 2001|070 + 2V2p - Vo - Vi

= (=68 — 2d + ) (|00 — |Ve|?*) + 4(1 — B)|V|?

—(2+68)(10i0]* — [Ve|?) + 4(1 = B)[Ve|*.

This quantity is bounded from below by a strictly positive constant in the region of
(=T,T) x Q in which

|8ﬁ0(t7x)|2 - ‘V(p(t,gj”z < 0 <= ﬂt < |1‘ - x0|v
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i.e. the complementary of the set {(t,x) € (=T, T) x Q with (|t|,z) € O} where O
satisfies (12).

e We now estimate the boundary terms in time' appearing at time t = T and
t = —T. We focus on the terms at time T, as the ones at time —7 can be handled
similarly. Let us first collect them:

I = ZSﬁT/ (10ey(T)* + [Vy(T)[?) dw+8s36T/|y #(6°T% — & — xo[?) dz
Q

+4s / 2(T) (Vy(T) - (& — w0) + Ju(T)) dv

The first and second terms are obviously positive (under Condition (8) for the second
one), so we only need to check that they are sufficiently positive to absorb the last
term, whose sign is unknown. We remark that

2
‘dx

[ [y (@ = 20) + Gucr)

= [1990) = a) do+ & [ @ —20) ¥ (D) do+ S5 [ i

= [19u) s o+ (35 -5) [P

< sgp{|m—$0|2}/ |Vy(T)\2 dz,
Q

since a = 2d — 2 gives a? — dad = —4(d — 1)(d + 1) < 0. This inequality allows to
deduce, by Cauchy-Schwarz inequality, that

s / () (Vy(T) - (&~ w0) + Fy(T)) d

< 2s5up {lz o) ( [ oy + 9ump) dx) .

Using again Condition (8), we easily obtain I > 0.

Gathering these informations, and using the geometric condition (3) on I'y, it
yields that there exists a constant M > 0 independent of s such that

T T
/ / PyyPyydxdt > Ms/ / (10wy]* + |Vy|* + $°|y|?) dedt
—TJQ T JQ

T
- Ms/ 0,y)? dodt — M s // ly|? dadt.
—T JTo (]t],x)eO

IThe authors acknowledge Xiaoyu Fu for having pointed out to us the fact that these boundary
terms have positive signs.
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From (23), we easily derive

T T
s/ / (|0wy]* + |Vy|* + s°|y|?) dmdt+/ / (|1Pry? + | Poy|?) dzdt
—_TJQ -TJQ

T T
gM/ /|,Zsy|2d:rdt+Msz/ /|y\2d:cdt
—_TJQ -TJQ

T
+ Ms/ 0,y|° dodt + M s // ly|? dxdt.
T JTIg (‘tLZ)EO

We take now s large enough in order to make sure that the term in s2|y|? of the right
hand side is absorbed by the dominant term in s3|y|? of the left hand side as soon as
s > so and we obtain

T T
(24) s/ /(|8ty|2+|Vy|2+82|y\2) dxdt+/ /(|P1y|2+|P2y|2) dzdt
—TJQ T JQ

T T
< M/ /|.$Sy\2dxdt+Ms/ / 0,y|? dodt + M s> // ly|? dzdt
—-TJQ —T JTg (Itl,x)eO

We then deduce (18) by substituting y = ze®¥.

Furthermore, under the additional condition z(0,-) = 0 in Q, we get y(0,-) =0
in Q. We then choose p : t — p(t) a smooth function such that p(0) = 1 and p
vanishes close to t = —T. We multiply P1y by pd;y and integrate over (—T,0) x
to get

0 0
/ / Pyy pdyy dxdt = / / (07y — Ay + s*((0ep)* — IV I*)y) pOry dadt
—TJQ —-TJQ

1 0 52 0
=3 [ [ooctiowe +19u?) aies 5 [ [ ool - 9o de
2 —TJQ 2 T JQ

1 1[0
=5 [lowoFds =5 [ [ ap (0wl + 1VoR) + 20 (pliansl - [V6l)) i o
Q T JQ

1

0
> 5 [ 10w de =21 [ [ (0P + 9y + ) dode.
2 Ja —rJo

By Cauchy-Schwarz inequality, this implies

T T
51/2/ |8ty(0)|2d;1:§/ /|P1y|2d:1:dt+Ms/ /(|8ty|2+|Vy|2—|—32|y\2) dxdt.
Q —-T JQ —-T JQ

Using (24) and y = ze®?, we easily deduce the estimate of term (19) and conclude the
proof of Theorem 3. 0

From this proof of Theorem 3, we can directly exhibit (see (24)) the following “con-
jugate” Carleman estimate, of practical interest later on:

COROLLARY 4. Assume the multiplier condition (3)-(4) and 8 € (0,1) as in (8).
Define the weight function ¢ as in (9). Then there exist constants M > 0 and sg > 0
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such that for all s > sg,
T T

@) s [ [ 0wl + 1ol + 2lP) dedt+ [ [ (1Pl + Payl?) dods
-rJa -rJa

T T
< M/ / |$sy\2dxdt—|—Ms/ 0,y|? dodt + M s> // ly|? dadt
-rJo —7J1, (It],x)e0

for ally € C°([-T,T); HX(Q)) N CH[-T,T); L*(2)), with Ly € L*((-T,T) x ),
where Ls, Py and Py are defined in (22).

Furthermore, if y(0,-) = 0 in Q, one can add the term 31/2/ |0:y(0)|? dz to the left
Q
hand-side of (25).
2.3. Proof of the convergence theorem.

Proof of Theorem 2. Let us first begin by showing that Algorithm 2 is well-
defined. We introduce

Ty = { € OO0, T); HE(2) 0 C([0, T LA(9),
with 072 — Az +qz € L*((0,T) x ) and 2(0,-) = 0 in Q},

endowed with the norm
T T
||z||(2)bs’qu = / / e*%)0%2 — Az + qz| dedt + s/ / e**%10,,2|? dodt
0o Ja 0o Jro

+ 83 // e |2|? dadt.
o

The proof that this quantity is a norm on 7, stems from the Carleman estimate of
Theorem 3 applied to z.(t,z) = z(t,z) for ¢ € [0,T] and z.(t,x) = —z(—t,x) for
t € [-T,0], x € Q. Indeed, (18) applied to z. yields for all s > sy,

T T
53/ / 2%\ 2|2 dadt < 2M/ / e*?|0%2 — Az + qz|? dadt
0o Jo 0o Ja

T
+ M ol [ [ B0l et
0

T
+ Ms/ / €% |0, 2% dodt + M s // 5%\ 2)? dadt,
0o Jro o

so that || - |lobs,s,q is @ norm on 7, provided s is large enough, and then for all s > 0 as
the weight functions are bounded on [0, 7] x Q. This immediately implies that J; 4[ji]
defined in (13) is coercive and strictly convex on the set 7, so that it admits a unique
minimizer and as a consequence, Algorithm 2 is well-defined.

Moreover, this shows that the class 7;, which was a priori dependent of ¢, is in
fact independent of ¢ (for ¢ € L>°(Q2)) and is simply given by

T = {= € ([0, T]: H () 1 C* ([0, T]: L*(2)),

with 92z — Az € L2((0,T) x Q) and 2(0,-) = 0 in Q}
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In order to show estimate (17), instead of considering only functionals of the
form J; 4[f], we introduce slightly more general functionals J; 4[f, g] given for s > 0,
q € L>*(Q), i€ L2((0,T) x Ty), g € L*((0,T) x Q) and for all z € T, by:

1 T
26) Tlinal) =5 [ [ iofs = Ax gz = g dua

T 3
+2 e?%%10,,2 — fi|* dodt + i e**?|2|? dadt.
2 2
o Jr, o

With the same argument as above, the functional Js 4[f, g] is coercive in the norm
[llobs,s,q and strictly convex, so that it admits a unique minimizer for each fi €
L2((0,T) x Ty) and g € L?((0,T) x Q).

We then observe that ¥ := n(p)z*, where z* satisfies (20) (recall the definitions
of nin (14) and ¢ in (9), pictured in Figure 2), is the minimizer of J, .« [fi*, §*] with

(27) 7" =n()(Q — "OWIQ] + [0 — A, n(p)]2",
since it solves:

022k — AZF 4 gF 2k = gF, in (0,T) x Q,
(28) k=0, on (0,T) x 08,
2H0) =0, 8:2"(0) = n(p(0,-)2F, inQ,

and 8,2% = [i* = n()0; (8,w[¢"] — 9, W[Q]) on (0,T) x Ty.

We shall then compare ZF and #¥_ the minimizers of the functionals Jg gk (", 0]
and J g [i¥, §*] respectively, especially at the time ¢ = 0 corresponding to the set in
which the information on (Q — ¢*) is encoded. The result is stated as follows:

PROPOSITION 5. Assume the geometric and time conditions (3)-(4) on Ty and T,
that B is chosen as in (8), and let u € L2((0,T) x Ty) and g%, g* € L%((0,T) x Q).
Assume also that g belongs to L, () for m > 0.

Let Z7 be the unique minimizer of the functional Js 41, g’] on T for j € {a,b}. Then
there exist positive constants so(m) and M = M(m) such that for s > so(m) we have:

T
(29) s1/2 / e2%(99,2%(0) — 8,2°(0)|? dez < M / / e2%|g® — g°|% dudt.
Q 0o Ja
where ¢ and so(m) are chosen so that Theorem 3 holds.

We postpone the proof of Proposition 5 to the end of the section and first show how
it can be used for the proof of Theorem 2.

Recall now that 9;2%(0,-) = (Q — ¢®)w®. Setting "' as in (16), we get from
Proposition 5 applied to Z% = Z* and Z° = z* that

T
(30) 81/2/ ergp(O)l(jk-&-l _ Q|2 |w0|2dx < M/ /623<p|§k|2 dxdt.
Q 0 Q

The next step is to get an estimates of g defined by (27). Using the fact that
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[n(¢), 07 — A] 2¥ has support in a region where ¢ < d§ := d(z¢,2)?, we obtain

/ / e25¢| gk |2 dacdt<M/ / e |n(p oW |[Q]|? dadt
+ M/ /9623“"\ (n(p), 07 — A] 2¥|? dadt
0

2 s
< MIWIQ o s [ 70l ~ @l da
, (T
4 MeQSdO/ / (V242 + [8,2%P + |242) dadt.
o Ja
Usual a priori energy estimates for z* solution of equation (21) also yields

(1) 2" e o, m2 ) + 102" L 0.1:22(2)) < M (2511220 + 19" L2 073222
< M|Q — ¢"ll2 (o) (Ilwoll (o) + 1:W[Q]ll L1 (0,7:L(2)))
< MAWIQI g1 0,750 (0 1€ — 7"l 2@,

so that combining the above estimates, we get
81/2 25gp(0) ~k+1 -Q 2w 2de < M I1W Q 2 ) e 62590(0) k_ Q 2 dx
o = HY(O,T5L=(@) | q
2 sd?
+ MAIWI[QN 5 0,71 () €2 N1Q = d* (172 ()-

Using ¢(0,x) > d2 for all z in 2 and Assumption (6), we deduce

(32) 27 [ P0G QP < MIWIQI s oirsmqey [ Ol QP
Q Q

Now, using the a priori assumption (7), i.e. @ € LZ (), we easily check that this
estimate cannot deteriorate in step 4 of Algorithm 2, which is there only to ensure
that the sequence ¢* stays in L2 (Q) for all k¥ € N. This completes the proof of
Theorem 2. - d

It only remains to prove the former proposition.

Proof of Proposition 5. Let us write the Euler Lagrange equations satisfied by
77, for j € {a,b}. For all z € T, we have

T
(33) / / (02727 — AZT + qZ7 — ¢7) (072 — Az + qz) dadt
Q

T
+ s/ / e*? (0,77 — 1)z dodt + s* // €25 73 7 dxdt = 0.
0 Jrg o

Applying (33) for j = a and j = b to 2 = Z = Z% — Z® and subtracting the two
identities, we obtain:

T T
/ /e2$¢|aEZ—AZ+qZ\2dxdt+s/ / >0, Z|* dodt+s* // e**?|Z|? dxdt
0 Q To (@)

/ / 259 (g* — ¢")(02Z — AZ + qZ) dxdt.
0
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This implies
1 [T T

(34) 7/ /eﬂsv\afz—Azszddes/ / €209, 2|2 dodt
2J)o Ja o Jro

1 T
+ s° // %\ Z|? dadt < 7/ / e??|g® — g°|? dxdt.
o 2Jo Ja

Since the left hand side of (34) is precisely the right hand side of the Carleman
estimate (18), applying Theorem 3 to Z, we immediately deduce (29). d

3. Technical issues on the minimization of the cost functional. The goal
of this section is to give several details about the actual construction of an efficient
numerical algorithm based on Algorithm 2. The main step in Algorithm 2 is to
minimize the functional J; 4[f1], that we recall here for convenience,

1 /7T T
Js.qlf](z) = 5/0 /9625“0|8,52z—Az—|—qz|2dxdt+§/0 /F e**%10,,z — ji|* dodt
0

3
+— // e?5?|2|? dxdt,
2 JJo

and which is minimized on the set

(35) T = {= € CO0,7); H3 () N C*([0, T}s L(%2),
with 92z — Az € L2((0,T) x ©) and 2(0) = 0 in Q}

Due to the presence of large exponential factors in the functional, the minimization
of Js 4[f7] is not a straightforward task from the numerical point of view, even if, as
we emphasized earlier, the minimization of J 4[fi] is much less stiffer than the one of
K, 4u] defined in (10) [BABE13]. We therefore propose the two following ideas:
e Work on the conjugate variable y = ze®#. This change of unknown acts as a
preconditioner. Details are given in Section 3.1.
e A progressive algorithm to minimize the functional Js 4[f] in subdomains in
which the variations of the exponential factors are small, see Section 3.2.

3.1. Conjugate variable. For z in T, we set y = ze®?, so that y satisfies the
following equation:

02y — Ay + qy — 250,00y + 25V - Vy

—5(07 0 — Ap)y + 52 (1010 — [Vo|?)y = e9(97 — A+q)z, in (0,T) x €,
y =0, on (0,T) x 09,
y(0) =0, 9y(0) = 2%, in Q,

where dyp = —28t, Vip = 2(x — x), 02¢ = —2 and Ay = 2d. We set % , defined
by %4 = e (02 — A+ q)e 5%:

Lyqy = 0fy — Ay + qy — 250,001y + 25V - Vy — 5(07 0 — Ap)y
+5°(10vp]* — V| )y
= 8t2y — Ay + qy + 4sBtory + 4s(x — xo) - Vy + 2s(B + d)y
(36) +45° (8% — |z — xo|*)y.
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Thus, minimizing J; 4[f] in (13) on the set T is equivalent to minimize the functional
Js 1] defined by

~ 1 [T T 3
Js,q[g](y)zi/o /Q|.$s7qy|2dxdt+§/o /F 1Oy — fie*®|? dodt+%//@y2 dwdt

on the same set 7. The minimization process for js,q[ﬂ] is then equivalent to the
resolution of the following variational formulation:
Find Y € T such that for all y € T,

T T
(37) / / LY Ly gy dadt + s / Y Opy dodt + 3 / / Yy dazdt
0 Q 0 To O

T
= s/ / e*?10py dodt.
0o Jro

From the Carleman estimate (25) applied to y extended for negative times ¢ by
y(t) = —y(—t), the left-hand side of (37) defines a coercive quadratic form, while
the exponentials now appear only in the right hand side of (37). Therefore, no expo-
nential factor appears anymore in the computation of the gradient of the functional
Jsqlft]. Our next goal is to deal with the exponential factor still in front of fi.

3.2. Progressive process. The idea to tackle the exponential factor in the
right hand side of (37) is to develop a progressive process to compute the minimizer
of L,q[ﬂ] as the aggregation of several problems localized in subdomains in which the
exponential factors are all of the same order.

In this objective, from the smooth cut-off function 7 equal to 1 for 7 > d2 defined
in (14), we introduce N cut-off functions {n;}i<j<n (these ones are not necessarily
smooth) such that

(38) vreR, > n(r)=n(r),

as illustrated in Figure 3.

Fig. 3: Example of cut-off functions 7; for 1 < j < 3.

Therefore, the target flux ft = n(¢)p can be decomposed as follows:

N
(39) fi=n(p)p = Z i,
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where fi;(t,z) = n;(¢(t, x))p(t, x),V(t,x) € (0,T) x Ty,Vj € {1,--- ,N}.

As the variational formulation in (37) is linear in i, one immediately gets that, if
for each j € {1,---, N}, we denote by Y; the minimizer of J; 4[fi;] on 7, then the
minimizer Y of J, ¢[fi] is simply given by

N
Y =>Y;

=1

The interest of this approach is that the target flux fi; involves exponential terms in
¢ on the support of n;(¢(t,z)). This becomes particularly interesting if we impose
that for each j € {1,---, N},

(40) Supp n; C [aj,b;] with b; —a; < C,
for some constant C' > 0. Indeed, in that case, we get

sup e°?
Supp n; (¢) < o5C
—r oS¢
in e
Supp 7; (¢)

so that if C' ~ 1/s, all the exponentials are of the same order when computing fi;.
Consequently, under the conditions (38)—(39)—(40), for all j € {1,---, N}, the mini-
mization of .J; 4[fi;] over T is easier numerically than the direct minimization of .J; 4[fi]
over 7. Besides, this approach can be used, at least theoretically, to parallelize the
minimization of J; 4[fi] over the set 7.

Let us present one possible way to construct the functions 7; in practice, precisely
the ones we used in our numerical experiments (where we chose to use C* functions,
even if it is not necessary). We set

d2 :ilglzf|z—a:0|2 and L} zsgp|x—xo|2.

Let us then choose an integer N € N* and set ¢g = d2/N. Next, define the cut-off
function n as follows:

0, if 7<0,
-1 S0 f(t
t) = S d = 1L IV
f() exp (t(ao—t)>’ al 77(7_) 050 f(t)dt’ 1 0<T<50,
1, if T Z €0-

Thus we introduce the cut-off functions n; defined by the formula

no(7T) =n(T — L(z)), and for j € {1,--- , N},
N—j N-(j-1
nj(T)Zn(T—LS v )‘”(T—L(%](V )>.

We then easily verify (38), Suppno C ]L%, 400 [, and that

] 2 J 2 j—l d%
VJE{L"',N}, SUPPUjC Lo 1_N 7LO I—T +N 3
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In particular, we have 1n9(¢(¢,x)) = 0 for all (t,z) € (=T,T) x Q as ¢(t,z) < L3 for
all (t,z) € (=T,T) x Q, so that we can omit 79(¢) in our approach.

By construction, the support of each n; for j € {1,---, N} is included in an interval
of size (L3 + d3)/N. We can then try to optimize the number N of intervals in the
progressive algorithm so that on each interval the weight function exp(sy) varies of
less than 5 order of magnitude, for instance by taking N as a function of s as follows:

where |-] denotes the integer part.

4. Discrete setting for the algorithm. In this section, we present the tech-
nical solutions we have developed to implement numerically the algorithm. In or-
der to simplify the presentation, from now on we focus on the one-dimensional case
Q= (0,L) and T'o = {& = L}. We consider a semi-discrete in space and time-
continuous approximation of our system, with a space discretization based on a finite-
difference approximation method on a uniform mesh. In this restrictive setting, all our
assertions can be fully proved rigorously by adapting the arguments in [BE11, BEO15].
Though this might seem very restrictive, we believe that our approach can be gener-
alized to fully discrete models and in higher dimensions for quasi-uniform meshes.

To begin with, we introduce some notations for this 1-d space semi-discrete frame-
work. The appropriate discrete Carleman estimate will follow. We will finally briefly
present how we approximate the functional J, 4[f] in (13).

4.1. Notations. In our framework, the space variable z € [0, L] is taking values
on a discrete mesh [0, L], indexed by the number of points N € N. To be more precise,
for N e N,weset h=L/(N+1),z; = jhforj € {0,--- ,N+1},and [0, L], = {z;, j €
{0,--+, N + 1}}. For convenience, we will also note (0, L), respectively [0, L), the
set of of discrete points {z;, j € {1,---, N}}, respectively {z;, j € {0,--- ,N}}.
Below, we will use the subscript h for discrete functions fj defined on a mesh of the
form [0, L], for some N, i.e. fn = (f;)jcqo,. ,n+1}- Analogously with the continuous
case, we write:

N
(41) Jo, 0 RN /.,

)

N
fh =h Z fj .
) j=0
We also make use of the following notation for the discrete operators:

Vj —V;— _ Vj — VU,
(Onon); = 5= 5 Oon); = B o)y = H—

(Apon); = Vjt1 — 205 + v
=

B2
By analogy with the definition of .Z; , in (36), we finally introduce, for s > 0 and g
a discrete potential, the conjugate operator .Z; g4, » defined by

(42) Ly anhYn = (07 — Ay + qn) (e *Pyp),

for yp, functions of t € (=7, T) and z € {x;, j € {1,--- ,N}}.
Before going further, let us emphasize that the discrete operator .Z; 4, 5 is different

from the operator % 4, » obtained by a naive discretization of .Z; 4 in (36) as follows:

i;s/,qh,hyh = 8t2yh — Apyn + qryn + 4spt0yn + 4s(x — 20)Onyn
(43) +25(8 + 1)yn + 45*(B°t* — |z — 20[*)yn,
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for any function y;, defined on (—7,T) x {z;, j € {1,--- ,N}}.

4.2. A discrete Carleman estimate for the discrete wave operator. In
this section, we provide the counterpart of Corollary 4 at the discrete level.

THEOREM 6. Assume the multiplier condition (3)-(4) and 5 € (0,1) as in (8).
Let L > 0, take xo < 0, and define the weight function ¢ as in (9). Then there exist
s0 >0, Ng >0, g0 > 0 and a positive constant M such that for all s € [sg,e0/h] and
for all N > Ny,

T
@) s [ [ (0w + 10t + 2l?)
=T J[0,L)n

T T
_ 2
<M / / s o nynl? dt + M / 0y (8)] dt
—7J0,L) T

T T
+M53/T/(0L )1(“’%)60'%2dt+MSh2/T/[O 5 |8t8,fyh\2dt,
_ Ln - JL)h

for all yj, such that y; € H*(=T,T) for all j € {1,---,N}, where O is defined in
(12).

Furthermore, if yp(0) = 0 in (0, L)y, the term 51/2/ |0:yn (0)|? can be added to

(O’L)h
the left hand-side of (44).

The proof of Theorem 6 is left to the reader as it follows step by step the proof of
Theorem 3 using discrete rules of integration by parts, which can be found in [BE11,
Lemma 2.6]. It is actually particularly simple as the coefficients of % ¢, depend only
on time or only on space variables.

Let us now briefly comment Theorem 6. First, compared with Corollary 4, we
see that the right-hand side of (44) contains one more term than (25), namely

T
(45) M sh? / / 10:0; yn|? dt.
—T J[0,L)

This is a high-frequency term. Indeed, as h@;{ is of the order of h|¢| for frequencies
&, this term can be absorbed for large s by the left hand-side of (44) for frequencies
& = o(1/h). However, for frequencies of the order of the mesh-size h, this term cannot
be absorbed anymore by the left hand-side of (44). This is not surprising in view
of the lack of uniform observability for discrete waves, see [Zua05], and the various
comments done in [BE11] on the discrete Carleman estimates for the wave equation
with weight functions exp(sy) = exp(sexp(A(¢ + Cp))).

Let us also point out that as in [BE11], the parameter s in Theorem 6 cannot be made
arbitrarily large as in Theorem 3, but is limited to some €/h. Roughly speaking, this
condition comes from the following fact:

(46) llexp(s9)In(exp(—sp)) + 5020 Lo (0.1)x0)) < Csh,

so that the coefficients of Z; ¢ 5 in (42) and j;,o,h in (43) are close only for sh small
enough. .

We end up this section with a warning. If we were considering the operator % o n
in (43) instead of Zs o5, in (42), the restriction on the size of the parameter s could
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be removed as the errors done in the conjugation process, for instance in (46), are

inexistent. However, when conjugating back the discrete operator .Z; o, one would
not obtain the discretization of the wave operator 0y — Ay, and this would yield
inaccuracies in our numerical experiments.

4.3. Semi-discretization scheme and algorithm. We now explain the dis-
cretization in space of the variational problem (37).
First, we have to discretize the set T in (35). We thus introduce the set 7, defined
as follows:

(47)  Tn = {zn € H*(0,T;RN"2) with 205,(t) = z2n41.4(t) = 0 for all ¢ € (0,7)
and z;,(0) =0 for all j € {1,--- ,N}}.

Following Theorem 6, it is natural to discretize the variational problem (37) as follows:
Find Y}, € T, such that for all y, € Tp,

T T
Y,
@) [ [ (LY L)t s [ I g
0 J(0,L), 0 h h

T
’ SS/T /(0 Ly) L), e0Ynyn dt
- sh

T T B
8h2/ / (ata: h)(atai—z_yh) dt = 3/ e’ <yz’hh> dt.
0 [0,L)n 0

Actually we will use this variational formulation (48) in the numerical experiments.
Compared with (37), we have added here the term

T
5h2/0 /[0 0 (8:0; Yn)(0:0; yn),

which is of course the counterpart of the term (45) and aims at penalizing the spurious
high-frequency waves which may appear in the discretization process. This term is
indeed really helpful when considering noisy data, as we will illustrate in the numerical
experiments in Section 5. But this term also guarantees that the variational problem
in (48) is coercive uniformly with respect to the discretization parameter h > 0, as it
can be deduced immediately from Theorem 6. In particular, it allows us to prove the
convergence of the algorithm given afterwards.

In order to state it precisely, by analogy with (26), for h > 0, a discrete potential
qn, a parameter s > 0, and i € L?(0,T), gn € L*(0,T;RY), ©, € L?(0,T;RY), we
introduce the discrete functional

(49)  Js,qn.nlfts Gn, Pn)(2n) =

e 25| 92 ~ 12 s [T 2s
- e“P\07 zn — Apzn + quzn — gu|“ dt + = e**¥
2J)o Jo.o), 2 Jo
53 T 2sp 2 8h2 r 2sp + ~ 12
+ 5 1(|t"1j)€oe |Zh| dt + - e |8t8h Zn — Vh‘ dt.
-7 J(0,L), o J[0,L)

defined on the set 7j. Of course, one easily checks that the solution Y} € T}, of the
variational formulation in (48) corresponds to the minimizer Z, of Js 4, n[f, 0,0] over

2

TENEa)|

h
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Tr, through the formula Y; = e%¢7,.
For any mesh-size h > 0, we define the discrete functions wyq p, w; j approximating

the initial data wg, w;, and the discrete functions f; and fs 5, approximating the source
terms f and fy. We construct Algorithm 3 as follows.

Algorithm 3

Initialization: ) = 0.
Iteration: From k to k+ 1
e Step 1 - Given ¢, we set

k(1) = n((t, L))o, <w§v 00w L)) o (0.7),

where wfb denotes the solution of

8t2wh — Apwy, + qﬁwh = fy, n (O,T) X (O,L)h7
(50) wo,n(t) = fo(t,0), wn+1n(t) = fo(t, L), on (0,T),
wh(O) = ’LU07h, 8twh(0) = ’LU17}L, iIl (0, L)h,

corresponding to (15) with the potential ¢* and 9, W[Q] is the measurement in (2).
And then set

(51) 75 = 0.0 (n()dwnlgr])  in (0,T) x (0,L)p.

e Step 2 - We minimize the functional Js7q§,h[ﬂﬁ, 0, 7] defined in (49), for some s > 0

that will be chosen independently of k, on the trajectories z;, € T,. Let Z,’f be the
unique minimizer of the functional Js’qﬁ’h[ﬂlﬁ, 0, 7).
e Step 3 - Set N
s IVAN( .
q}liJrl =gk + L(X in (0, L)
Wo,h

e Step 4 - Finally, set

k41 o1 - | aq if lg| < m,
q, = Tm(qh )s with Ty (q) = { sign(q)m, if |q| > m.,

where m is the a priori bound in (7).

One can then state a convergence result provided several assumptions are satis-
fied, basically corresponding to (5)—(6)—(7) and the consistency of our approximation
schemes. Namely we assume:

(1) Assumptions (5)—(6)—(7) and (8) are satisfied.

(#4) There exists a > 0 independent of h such that for all h > 0,

(52) inf |wop| > a.

(0,L)n

(#i1) There exists a sequence of discrete potential (Qp)r>0, each @y being
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defined on (0, Ly) such that:
1. For each h > 0, Q;, is bounded uniformly on (0, L) by m:

(53) sup |Qn| < m.
(0,L)n

2. The piecewise constant extensions of Qj, strongly converge in L2(0,L) to Q
when h — 0.
3. For each h > 0, introducing W},[Q}] the solution of

RWy — AWy, + QW = [, in (0,7) x (0, L),
(54) Won(t) = fo.n(t,0), Wniin(t) = fon(t, L), on (0,T),
Wh(O) = Wo,h, 8tWh(0) = W1i,h, in (0, L)h,
we get
T 2
(55) sup [ | sup (01734 dt < o
h>0J0 [(0,L)n

and the following consistency assumptions:
(56)

T

lim (/0 n(p(t, L))?
T

lim ( /0 /[O,L)h |h8;[8t(n(gp)8tWh[Qh])|2dt) —0.

These are natural assumptions regarding the inverse problem at hand. They have been
widely discussed in [BE11, Section 4] and [BEO15, Section 4]. These two works give
sufficient conditions for the existence of a sequence of discrete potential @)} satisfying
(53)—(55)—(56). They also proved that, under some further suitable assumptions on
the convergence of fx, fo,n, won, w1k, a sequence Q satisfying (53) and (56)(; o)
necessarily converges to the potential @ in L?(0, L) (after having been extended as
piecewise constant functions in a natural way).
We get the following result:

OWn 1,1[Qn] — OWN 1[Q]
h

— 0:0,W[QI(¢, L)

2
dt) -

THEOREM 7. Under assumptions (i)-(ii)-(iii) above, Algorithm 3 is well-posed
for all h > 0 small enough. Specifically, the discrete sequence qu satisfies for some
constants Cy, C1 > 0 independent of s >0 and h > 0,

C
(57) / Xt - QulP < =2 e**?|q; — Qnl?
(0.L1) Vs Jo.)

T
4 Cysl? /0 /[0L> €252 137 Oy (n(0) s Wa | Qn]) 2dt
9 h

2

O W +1,1[@n] = OWN1[@n] 0,0, W[Q](t, L)| dt.

h

T
+ 0181/2/ eZsap
0
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In particular, for s > 4CZ, we get, for all k € N,
2sp| .k 2 1 2sp 2
(58) e"*lap, — Qnl” < o9k e”*|Qn|
(0,Ln) (0,Ln)

T
20,512 / /[w €25% 10} 0,(n(2) D W Q) [Pt

2

OWns1.0[On] = AWnnl@nl _ g o yyrio1t 1) at

h

T
—|—2Clsl/2/ e2s¢
0

so that as k — o0, q,’i enters a neighborhood of Qn, whose size depends on h and s
and goes to zero as h — 0 according to (56).

Proof. We focus on the proof of (57). As in the continuous case, it mainly consists

in showing that ZF is close to ZF = n(¢)zF, where

2 = 0y (walay] — WalQn)) -
The main idea is to remark that z}’f satisfies

OF2F — ApzF +gkzk =gF,  in (0,T) x (0,L)p,
zéh = z]’iprl,h =0, on (0,7),
25(0) =0, 92;(0) = zf,,, in (0,L)n,

with
g5 = (Qn — af) 0 Wi [Qn), 2 = (Qn — af)wo,n-
In particular, 2’; satisfies:
OFZF — ApzF +qfzr =gk, in (0,7) x (0,L)y,

(59) 20,}1 = ’g]k\H—Lh = 07 on (OaT)v
Z8(0) =0, 0:28(0) = th, in (0,L)p,

with
ar = () (Qn — af) O Wr[Qn] + [07 — Ap,n(e)]zf-

Moreover, one has the following boundary data

—Znat)
(60) SN ) - a(t) on (0,7),
where
5u(t) = ne(t, L)) <WN+1vh[Qh]“>h W.nlQul®) _ anwm(t,m) |

Therefore, 25 is the minimizer of the functional Js,qz,h[ﬁﬁ — 5h7§]ﬁ’ f/;f — Up,] where Dy,
is given by

(61) ﬁh = 87{& (n(ap)é)tWh[Qh])? in (O,T) X (O,L)h

But by construction, Z,’f is the minimizer of J57qz7h[ﬁﬁ, 0,7F]. We thus only need to
compare minimizers corresponding to the other coefficients (dy, g’,j and 7). As in
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the proof of Proposition 5, using Euler-Lagrange formulation and using the Carleman
estimate (44), one easily gets:

T
(62) s5'/? / ¢2¢0)|9, 28 (0) — B2 (0)[2 < Cs / 25015, 12 gt
(0,L)p, 0

T T
+c/ / e25¢|g,’§|24t+osh2/ / 5|0y, |2 dt.
0 (0,L)p, 0 (0,L)p,

Following now the proof of Theorem 2 we can show that
T
|| esldpase [ g quiar
0 J,L)n (0,L)n
while, by construction,

81/2/ 625¢(0)|8tz}lf(0) _ 8155}]?,(0”2 > sl/2a2/ e?sw(0)|q}l§+1 _ Qh|2
(OvL)h (OvL)h

> 81/2a2/ e2sga(0)|qz+1 _ Qh|2'
(0,L)p

We then put together the two last estimates in (62). Recalling that 6, and v}, are
respectively given by (60) and (61), we immediately obtain (57).

The proof of estimate (58) easily follows from (57). Indeed, by recurrence, one
can easily show that, if s > 4CZ, for all k € N,

1
| vl < [ eianp
(Oth) (Oth)

k—1 T
1
X g | [ ermaaenmian P

§=0 2 0 J[0,L)n

1 4 IWn+1,0[Qn] — O Wi n[Q4] ?
+(> 5 0131/2/ g S , — 9,0, W[Q](t, L)| dt,
=0 0
which is slightly stronger than (58) and concludes the proof of Theorem 7. O

Note that we presented the above theoretical results by restricting ourselves to the
1d case for the time continuous and space semi-discrete approximation of the inverse
problem. Though, this analysis can very likely be carried on in much more general set-
tings, for instance higher dimensions or fully discrete approximations. Of course, the
key missing point is then the counterpart of the Carleman estimate in Theorem 3. De-
spite important recent efforts for developing this powerful tool in the discrete setting,
see in particular [KS91, BHLR10a, BHLR10b, BHLR11, EdG11, BLR14] for discrete
elliptic and parabolic equations, and [BE11, BEO15] for discrete wave equations, the
validity of discrete Carleman estimates in the discrete settings remains mainly limited
to smooth deformations of cartesian grids for the finite-difference method.

We would like also to emphasize that Theorem 7 is not a proper convergence theorem,
as it only says that the sequence of discrete potentials q’ﬁ will enter a neighborhood

This manuscript is for review purposes only.



no

=

[SL N1 SN, BN |

at

o A B B B |

IS S N |
(23N, NG, SN )
S © 0 N O

761
762
763
764
765

766

26 L. BAUDOUIN, M. DE BUHAN, AND S. ERVEDOZA

of Qp as k — oco. The size of this neighborhood, given by

T
20, 5172 / /[ ., OO Qi) P
0 0,L)p

OWN11,01Qn] — O Wi n[Q] ?
i — 0:0,W[Q](t,L)| dt,

T
+ 20,52 / e2s¢
0

see (58), is in fact very much related to the consistency error. It is nonetheless
interesting to point out that choosing s large to improve the speed of convergence of
the algorithm also increases the size of this neighborhood. One should keep in mind
that remark, which also applies in the presence of noise.

IMPORTANT REMARK 1. The choice made in (51) does not seem natural because
it is not based on the difference between wy[qF] and Wi,[Qp], the latter being unknown.
It is also important to mention that for some reasons that we still do not fully un-
derstand the numerical results given by Algorithm 3 with this choice show numerical
instabilities. Instead, we propose to replace Algorithm 3 by

Algorithm 4

Everything as in Algorithm 3 except:

Iteration:

e Step 2: We minimize the functional J57qﬁ7h[ﬂ270, 0] defined in (49), for some s > 0
that will be chosen independently of k, on the trajectories z;, € T,. Let Z,’f be the
unique minimizer of the functional Js’qﬁ’h[ﬂ,";, 0,0].

With this choice, we do not know how to prove a convergence result of the algo-
rithm similar to Theorem 7.
However, this choice coincides more with the insights we have on the algorithm as
28 in (59) is the minimizer of Js,qﬁ,h[ﬂg — 61,0,7F — ], and if convergence occurs,
D’,j — Uy, should be small and converge to zero.
The numerical results presented in Section 5 will all be performed using Algorithm 4.
As we will see, this will lead to good numerical results, in agreement with the above

insights.

4.4. Full discretization. When implementing Algorithm 3 numerically, one
should of course consider fully discrete wave equations. We will not give all the details
of this discretization process, but simply state how we implement the minimization
process of the functional J, g, n.

First, we shall of course consider a fully discrete version J, 5, . of the functional
JIs.qn.h i (49), in which we have implemented a time-discretization of Js 4, 5 of time-
step 7. This implies in particular that:

e The minimization space 7, has to be replaced by the set of time discrete func-
tions zj, , € RV x RVN*2 with Ny = [T/7] and the corresponding boundary
conditions.

e The time continuous integral in (49) shall be replaced by discrete sums

sdh,

T Zte[O,T]er'
e The wave operator should be replaced by a time-discrete version of the space

semi-discrete wave operator 0y — Ay, + q,. We simply choose to approximate
Ou by the usual 3-points difference operator A, (similar to Ay but applied
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in time now). Similarly, the operator d; in the last term of (49) will be
replaced by the operator 91 which is the approximation of d; computed with
the subsequent time-step.

e The solution wy, of (50) has to be computed on a fully discrete version of
(50). We choose to discretize using an explicit Euler method.

e There is no need to add a new penalization term for high-frequency spurious
terms as we will impose a Courant-Friedrichs-Lax (CFL) type condition 7 <
h, so that the last term in (49) already penalizes the spurious high-frequency
solutions.

Of course, the strategies that have been presented in Section 3 to make the nu-
merical implementation of the minimization of J, , more efficient can be successfully
applied to the functional szq;;’hﬁ as well. Namely, in the implementation of Algo-
rithm 4, we will always work on the conjugated functional, i.e. the one given in the
conjugated variable y = e*%z, and we will always decompose the domain using the
progressive argument presented in Section 3.2.

We also point out that the minimization of the quadratic functional J 4, 4~
obtained that way can be recast using a variational formulation similar to (37), which
presents the advantage to underline the fact that we are actually solving a sparse
linear system. We therefore use a Compressed Sparse Row (CSR) tool as sparse
matrix storage format and solve the linear system thanks to an LU factorization.

The iterative process on the potential is supposed to reach convergence when the
following stop criterion is satisfied

" = ail?
/(O,L)h

/ lan — anl®
(0,L)n
1

/ |mwmmmﬁﬁmf
[0,T)-

(63) <e€ or

(0 wl) v (1) = 0. WIQIE )] < en.

for given choices of the parameters ¢y > 0 and €; > 0, in which the integrals have to
be interpreted in the discrete sense.

5. Numerical results. This section is devoted to the presentation of some nu-
merical examples to illustrate the properties of the reconstruction algorithm and its
efficiency. All simulations are executed with the software SCILAB. The source codes
are available on request.

5.1. Synthetic noisy data. In this article, we work with synthetic data. To
discretize the wave equations with potential (1), we use a finite differences scheme
in space and a @-scheme in time. The space and time steps are denoted by h and 7
respectively. We set L = (N, + 1)h and T = N;7, and we define, for 0 < j < N, + 1
and 0 < n < N, W} a numerical approximation of the solution W(t", ;) with
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t" =n71 and x; = jh. It is solution of the following system:

+1 n —1
Wt — 2w Wt g

T2 2

(ARWa)T = (1= 0) (AW}

0
(64) AT Q)W = 107 y),
Wi =wo(z;) + Twi(w;) + % ((Anwo)(x;) = gq(j)wo(x;) + f(0,25)),
W9 = wo(x;) Lsis N,
W' = fo(t",0) and W ., = fo(t", L), 1snsh

Then, we compute .#; the counterpart of the continuous measurement .# given in

(2) as follows:
we - W2
ML) = R
On the computed data, we may add a Gaussian noise:

(65) M) — (1 4+ aN(0,0.5)).4-(t"), 0<n<N,

where N(0,0.5) satisfies a centered normal law with deviation 0.5 and « is the level
of noise. Note that the model of noise, that we chose, is a multiplicative noise. It
allows to model the experimental error in the measurements.

One of the main drawbacks of the method presented in Algorithm 4 is that we
have to derive in time the observation flux. On Figure 4, we plot the flux .Z with
respect to time (on the left hand side) and of its time derivative (on the right hand
side). For each of the graphs, the red line is the exact value and the black line the
generated noisy data. It shows that even a small perturbation on the observations
gives rise to a large perturbation on its derivative. In order to partially remedy to
this problem, we regularize the data thanks to a convolution process with a Gaussian:

00 2
(66) or= \/% /0 Mt r)exp <—2> dr.
The number of iterations in this regularization process must be chosen in accordance
to the a priori knowledge of the noise level. On Figure 4, the new regularized data
that we use as an entry for the algorithm is plotted in blue.

In order to avoid the inverse crime, we use neither the same schemes nor the
same meshes for the direct and the inverse problems. Hence, we solve (1) thanks to
an implicit scheme (6 = 1) with 7 = 0.00033 and h = 0.00025 and we use an explicit

scheme (6 = 0) for equation (15) in Algorithm 4, with 7 = 0.01 and h = ﬁ Table
1 gathers the numerical values used for all the following examples, unless specified
otherwise where appropriate. In all the figures, the exact potential that we want to

recover is plotted by a red line, the numerical potential recovered by the algorithm is
represented by black crosses.

L|f] fo wo wy X B T s | m CFL
10| 2 | 24sin(rz) | 0 | =03 ]0.99 | 1.3 | 100 09 or 1

w

Table 1: Numerical values for the variables.
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-4 T T T T T T T T T T T 1 -15 T T T T T T T T T T T 1
R R R A I R e R R I
(a) Flux .#(t) (b) Time derivative of the flux ;. (t)

Fig. 4: The measurement .# in the presence of 2% noise.

5.2. Simulations from data without noise. In this subsection, we present
the results obtained for CFL = 1. For that very special choice, the explicit scheme
used to discretized (1) is of order 2. We observe that in this case, the additional
regularization term (45) in the functional does not seem to be necessary and s can be
chosen as large as wanted independently of the value of h to achieve convergence. The
successive results at each iteration of Algorithm 4 in the case of the reconstruction of
the potential Q(x) = sin(27wz) are presented in Figure 5. One can observe that in less
than 3 iterations, the convergence criteria (63) for ¢g = 107° is met.

(a) ¢° (b) ¢* (c) ¢* (d) ¢

Fig. 5: Hlustration of the convergence of the algorithm for CFL =1 and s = 100.

Using the same target potential, Figure 6 illustrate the progressive process on the
first iteration of Algorithm 4. From an initial data ¢) = 0, we represent successively

0
2,YL(0)
65<F(0) Wo ’

0 0

45 = qj—1 <J<5

)

where on is the minimizer of J~s7qo [ﬂ?]

In Figure 7, several results of reconstruction of potentials obtained using Algo-
rithm 4 in the absence of noise are given.

We recall that in our approach, it is mandatory to know the a priori bound m
such that @ € LZ, (R). On Figure 8, we illustrate the behavior of the algorithm in
the case where an error is made on that bound. One can observe that the recovery of
the potential is correct only in the zones where the potential @ is effectively bounded
by m. In this situation, the convergence of the process doesn’t occur. In practice, if
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(d) 3 (e) 4§ (f) ¢ =¢*

Fig. 6: Tllustration of the progressive process for Q(x) = sin(27x) for s = 100.

(2) Q=—= (b) Q heaviside (¢) Q =sin(+Z)

Fig. 7: Different examples of reconstruction for CFL =1 and s = 100.

846 the retrieved potential meets the value of m in several points, it is recommended to
847 repeat the reconstruction process after choosing a greater value of m.
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(a) (b)

Fig. 8: Reconstruction of exact potentials with the wrong choice of the a priori bound
m = 0.5, for CFL =1 and s = 100.

5.3. Simulations with several levels of noise. If we slightly modify the sta-
bility condition and take a C'F'L condition strictly smaller that 1, the explicit numer-
ical scheme used to solve (15) leads to a non negligible approximation error, acting as
a noise. The presence of the additional regularization term (45) in the functional is
therefore necessary. In that case, if the mesh size h (through 7) is given, it is not pos-
sible to take s as large as desired. Nevertheless, even for smaller values of s, Algorithm
4 gives good results, that can be improved by refining the mesh. In Figure 9, several
results of reconstruction of potentials obtained for a = 0, CFL = 0.9 and s = 10
are presented. Figure 10 shows the results for Q(z) = sin(wx) with different level of

I W B

(a) Q = sin(27z) (b) Q heaviside (c) Q@ =sin(7%)

Fig. 9: Different examples of reconstruction for CFL = 0.9 and s = 10.

noise in the measurements (o = 1%, 5% and 10%). Here, we used the appropriate
discretized functional constructed to deal with the discretization process.

Eventually, Figure 11 shows on the left hand side, an example of result obtained
when the functional is discretized without taking into account the additional terms
(45) requisite for its uniform coercivity with respect to the mesh size. Since the first
iteration, severe oscillations occur and they amplify with the iterative process. On
the right hand side, we illustrate the necessity of choosing a discretization space step
small enough with respect to the value of the parameter s. Indeed, if the mesh size is
too coarse, numerical instabilities appear.

5.4. Simulations for initial datum not satisfying (6). So far, we presented
numerical simulations in which the positivity assumption (6) on wy was satisfied. In
this section, we would like to briefly present what can be done in the case in which it
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(a) a=1% (b) o = 5% (c) a=10%

Fig. 10: Recovery of the potential Q(z) = sin(rz) in presence of noise in the data.
The level of noise is denoted by «. Here, CFL = 0.9 and s = 10.

(a) Result for CFL =0.9, s = (b) Result for h = 0.011 and
4 and no regularization term. s =17, that is sh = 0.187.

Fig. 11: Tllustration of the need of the additional regularization term (45) in the
functional (left). Illustration of the needed condition (46) between s and the space
step h (right).

is not satisfied. In that case, Step 3 of Algorithm 4 can be replaced by :
(67)
ZE0,,
+ M, for j € {1,---, N} such that |wy(z;)| > «,
wo(z;)
0, elsewhere,

k(o
Gt () = an(;)

where « > 0 is the constant appearing in (6). As an example, let us consider
wo(x)zfa‘i’xa a € (OvL)v

which cancels at # = a in a single isolated point. If we take a = 1072, we obtain the
results given in Figure 12. Actually, the reconstruction is satisfactory outside a small
neighborhood around = = a.

Note that here, we made the choice to set 0 for the potential in the set {x €
(0,L), lwo(z)| < a}. Of course, other choices are possible. Among them, one could
for instance simply do a linear interpolation between the values at the boundary of
the set {x € (0, L), |wo(z)| > a}. Though, as illustrated in Figure 12, it seems that
Algorithm 4 converges anyway in the set {« € (0, L), |wo(z)| > a}. One can therefore
perform any kind of interpolation process to complete the values of the potentials in
the set {z € (0, L), |wo(x)| > a} after the convergence has been achieved.
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' + f
,
"
o + +

(a) Q =sin(2wz) and a = 0.5. (b) Q =sin(2wz) and a =0.2.  (¢) Q heaviside and a = 0.5.

Fig. 12: Reconstructions for wy(x) = —a+z not satisfying (6), CFL =1 and s = 100.

5.5. Simulations in two dimensions. We also performed some reconstruc-
tions in two dimensions where Q = [0,1]2, 7o = (—0.3,—0.3), Ty = {z = 1} U{y = 1},
wo(r1,22) = 2 + sin(nzy) sin(rzs), w1 =0, f =0, fo =2, § =099, m = 2 and
CFL=05< g Figure 13 presents the results obtained for three different poten-
tials. We took s = 3 and could not take it larger. Indeed, decreasing the space step
h to ensure that sh remains small (condition (46)) leads to large systems (37) that
exhaust the computational memory of SCILAB pretty fast. The preliminary results of
Figure 13 are obtained in an ideal framework where both direct and inverse problems
are solved with the same numerical scheme on the same mesh and there is no noise.
All theses simplifications will be removed in a forthcoming work where we wish to
develop a convergent algorithm to reconstruct a non homogeneous wave speed from
the information given by the flux M.
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