Apprentissage de structure de réseaux bayésiens à partir de réseaux markoviens - Archive ouverte HAL
Communication Dans Un Congrès Année : 2006

Apprentissage de structure de réseaux bayésiens à partir de réseaux markoviens

Christophe Gonzales
Nicolas Jouve
  • Fonction : Auteur
  • PersonId : 981788

Résumé

Sous l’hypothèse que les données ont été générées selon une loi de probabilité isomorphe à un graphe orienté sans circuit et que les données sont en nombre suffisant, nous proposons une méthode d’apprentissage de structure des réseaux bayésiens exploitant les propriétés de trois représentations graphiques de l’indépendance probabiliste : les réseaux bayésiens (RB), les réseaux markoviens (RM) et les graphes essentiels (GE). La méthode se déroule comme suit : i) apprendre un RB B dans un espace contraint par un ordre topologique heuristique ; ii) le moraliser en un RM G ; iii) optimiser G en G∗ , le RM optimal, par des tests d’indépendance ; iv) orienter G∗ en un RB B' de même graphe moral que B∗ , le RB optimal ; v) raffiner B' par recherche locale dans les GE jusqu’à atteindre un équivalent de B∗ . Nous fournissons des garanties d’optimalité et de complexité.
Fichier non déposé

Dates et versions

hal-01351254 , version 1 (03-08-2016)

Identifiants

  • HAL Id : hal-01351254 , version 1

Citer

Christophe Gonzales, Nicolas Jouve. Apprentissage de structure de réseaux bayésiens à partir de réseaux markoviens. 15ème congrès francophone de reconnaissance des formes et intelligence artificielle, Jan 2006, Tours, France. ⟨hal-01351254⟩
47 Consultations
0 Téléchargements

Partager

More