Template Shape Estimation: Correcting an Asymptotic Bias - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2017

Template Shape Estimation: Correcting an Asymptotic Bias

Résumé

We use tools from geometric statistics to analyze the usual estimation procedure of a template shape. This applies to shapes from landmarks, curves, surfaces, images etc. We demonstrate the asymptotic bias of the template shape estimation using the stratified geometry of the shape space. We give a Taylor expansion of the bias with respect to a parameter σ describing the measurement error on the data. We propose two bootstrap procedures that quantify the bias and correct it, if needed. They are applicable for any type of shape data. We give a rule of thumb to provide intuition on whether the bias has to be corrected. This exhibits the parameters that control the bias' magnitude. We illustrate our results on simulated and real shape data.
Fichier principal
Vignette du fichier
siims_article_black.pdf (2.79 Mo) Télécharger le fichier
siims_supp.pdf (320.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01350508 , version 1 (02-09-2016)
hal-01350508 , version 2 (02-02-2017)

Identifiants

Citer

Nina Miolane, Susan Holmes, Xavier Pennec. Template Shape Estimation: Correcting an Asymptotic Bias. SIAM Journal on Imaging Sciences, 2017, 10 (2), pp.808 - 844. ⟨10.1137/16M1084493⟩. ⟨hal-01350508v2⟩
362 Consultations
598 Téléchargements

Altmetric

Partager

More