SUPPLEMENTARY MATERIALS: paper " Template shape estimation”*

Nina Miolane, Susan Holmesi, and Xavier Pennec'

These are the supplementary materials for the paper ”"Template shape estimation: cor-
recting an asymptotic bias”. We present the detailed proofs of the theorems. The precise
statements of the theorems are given again in each section of this supplementary materials.

SM1. Notations. We denote Y the template shape and Y its estimate. X is a point in
the manifold M. We consider that X belongs to a principal orbit and we recall that the set of
principal orbits is dense in M. We write Z = 7(X) the projection of X in the shape space Q.
We denote m the dimension of M, p the dimension of the principal orbits and ¢ the dimension
of the quotient space. Figure SM1 shows the elements Y, X, Oz = Ox, Z = n(X).

Figure SM1. Summary of the notations used in the proofs. Y is the template shape, X is a point in M,
belonging to a principal orbit Ox. Z = 7w(X) s the projection of X in the shape space.

Normal Coordinate Systems. We often use Normal Coordinate Systems (NCS) to express
the coordinates of tangent vectors. We refer to [SM2] for theoretical developments about the
NCS and to [SM1] for Taylor expansions of differential geometric tensors in a NCS.

For example, we may consider a NCS centered at the point Y, with respect to the Rie-
mannian metric of M. This NCS is valid on an open neighborhood of Y, that is start-shaped
domain around Y. Moreover, we assume that M is geodesically complete : thus, this domain
is equal to the whole manifold M, with the exception of the cut locus which is of null measure
[SM2]. The Riemannian logarithm of a point X in the NCS at Y is denoted: YX.
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Asymptotic behavior for o — 0. We denote: (i) ©(c*) a function that is proportional
to o, (ii) O(c%) a function equivalent to o* for 0 — 0 and (iii) (o) a function that is
exponentially decreasing for o — 0.

SM2. Preliminaries.

SM2.1. A first computation. First, we show a technical result that will be used through-
out the proofs. We show that the following integral on Ty M, the tangent space of M at

Y:
/C ldM(Y,X)kexp< i )dy_)f

is a function 0 — €(0), i.e. decreases exponentially when ¢ — 0. In the integral above, the
notation Cp, denotes the complement in M of the geodesic ball B, of center Y and of radius
T

We split the coordinates in 7y M into (p,u) (polar coordinates):

d2
I dM(Y,X)’“eXp< ( )dXH < K/ } / p eXP( 2p) p" dpdS™
uesS™

Ca,
p(u) 2
< K/ / P L exp <_p2> dpdS™
uesS™ Jr 20

where p(u) is the distance to the cutlocus in the direction w.
The positive integral is upper bounded by the same integral defined on the larger domain:

d2 Y. X “+o00 2
1] awtvxben (BB ax< i [ [T e (<) apast
CBT g uesS™m Jr 20
Integrating the volume of the unit hypersphere:

d2 Y. X o0 2
H deX)'fexp(—M(’))dXHSK / pm+“exp(—p2)dp

Co, 202 20

where the right-hand-side is dominated by exp(—3 ) by the dominated convergence theorem.
Therefore:
d3,(Y, X
(SM1) / dy (Y, X)¥ exp <—M(2)> dX = €(o)
CBT 20

i.e. decreases exponentially when o — 0.

SM2.2. Truncated Gaussian moments in a Euclidean space. We give preliminary com-
putations of Gaussian moments in a m-dimensional vector space R™, using the curved nota-
tion M. We refer to the (unnormalized) moment of order k of the m-dimensional Gaussian
of covariance c>A as:

T A—1
lelk (O'QA) _ / X11sz exp (—)(2/12)(> dX
" g
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and to the truncated (unnormalized) moment at radius v of the m-dimensional Gaussian of
covariance 0> A as:

o . . XTA-1x
qu}...zk (O_QA) — Xt Xk exp (_ s ) dX
B, 20

where the integration domain is now the m-dimensional ball B,.

SM2.2.1. First, we recall the expressions of some unnormalized Gaussian moments..
The order 0, 2 and 4 are:

MO(02.A) = o™ \/(2r)m+/det (A)
MP (52 A) = ™2 /(2m)m\/det (A). AP
2A) — 0m+4\/(27r)m\/det (A) (AabAcd + AacAbd + AadAbc)

)

(SMQ) Mabcd(
./\/li1--.ik(g2.A) =0 (am+k)“mlk if k even
=0 if k odd

where we recall that ©(c™**) denotes the proportionality to o™**.

SM2.2.2. Second, we turn to the (unnormalized) truncated moments.. They write,
with respect to the total moments:

o o ‘ , XTA-IX
M:}...zk (0'2A) — Ml1...1k(a_2A) _ lelek exp <_2> dX
Cs, 20

The second term of the sum is negligible when ¢ — 0. To see this, we put an upper bound
on its norm through triangular inequality:

o XTA-1X ~ ~ XTA™X
| [ X' X%exp <—22) dX|| < / [ ||...|| X% exp (—2> dX,
Cs. - . 20

T

using triangular inequality on their coordinates:

' ‘ xXTA-1x XTA-1x
[ X X exp (—22> dX|| < / [1X1* exp <—22> X,
Cs, g B 7

T

and performing the change of variables X’ = A~1/2X i.e. taking the matrix square root of

the positive definite matrix A~

XTA-1X
202

I X X% exp (—

Ca,

X/TX/
)axii< AN exp (=S5 ) e (442) ax
B 20
[11AY/2)|r
Xl 2
:H’A‘|’k/2det<Al/2>/ HX/erxp —H I dX.
202 I

B
[11AL/2||r
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By the computations in Subsection SM2.1, we have:

; ; XTA-1x
I X" X% exp <_W> dX|| = €(o)

Cp,

Therefore, the truncated moments are equivalent to the (full) moments for o — 0:

(SM3) M (g2 A) = MU~ (0% A) + €(0)

SM2.3. Isotropic Gaussian Moments on a Riemannian manifolds . We turn to compu-
tations of Gaussian moments in a m-dimensinoal Riemannian manifold M, using the notation
M. We refer to the (unnormalized) moment of order k of the m-dimensional isotropic Gaus-
sian of covariance o1 as:

oMk (2] = /M YXU. Y X% exp <—d?W(X’ Y)> dM(X)

202

and to the truncated (unnormalized) moment at radius v of the m-dimensional isotropic Gaus-
sian of covariance o1 as:

R / yXn X exp( )dﬁ%
where the integration domain is now the m-dimensional geodesic ball B, of radius r and

centered at Y.

SM2.3.1. First, we consider the truncated moments:.
oMk (621 = /B YX Y X exp <_dﬁ4(f£Y)> dM(X)
InaNCSatY : d,(X,V)=VXTVX:
g (o) = [ TR TR ey ( 7?}?) )
On the small ball By, dM(X) = dY X + 1 Ro(Y)Y XY XY X + O(|[Y X |]*)dY X :
e ) = | T T ()
LS Rar) [ TR T o (_ﬁzﬁ) i
/ OV X|)Y X71.. Y X exp < ﬁTﬁz) AV X
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Now we recognize the (un-normalized) moments of a truncated isotropic Gaussian a B,
in the vector space Ty M ~ R™. We replace them by the expressions given in the previous
subsection:

millk (0_2]1) — (lezk (O’ZH) + E(O’)) + % ZRab(Y) (Mabil...ik(o_Q]I) + 6(0’)) + O(O_m+k+4)
ab

The sum of two functions that decrease exponentially for 0 — 0 is a function that decreases
exponentially for ¢ — 0. So that:

m’;}zk (0_2]1) — Ml1lk(0,2]1) + é ZRab(Y)Mabi1...ik(a_2H) + O(o.m+k+4) + 6(0’)
ab

We take the o’s out:
(SM4)

O.k+m+2

gﬁf}% (0,2]1) — O.k+mMi1...ik (]I) + ZRab(Y)Mabh...ik (]I) + O(O.m+k+4) + 6(0’)

ab

SM2.3.2. Second, we consider the (full) moments.. They write, with respect to the
non-truncated moments:

o o . . 2.V, X
Mo (021) = M- (021) + [ X7 X% exp <—M;2)> dM(X)
Cs, o

The second term of the sum is negligible when o — 0. To see this, we put an upper bound
on its norm through triangular inequality:

d%, (Y, X)

X, X —
H exp (-7

Cs,

Jasrol< [ e (S5 avrong

T

then using triangular inequality on the coordinates:

dﬁJ(Y,X))

X X -
|| exXp ( 20-2

Ca,

2
Ol < [ (v 0 e (—df”;g”)) AM(X).

Ca,

We assume that the Ricci curvature of M is bounded from below. Therefore, the measure
dM has an upper bound with respect to the Lebesgue measure on the tangent space, which
we write K: dM(X) < KdX:

, , d2,(Y, X)
X, X% MY aM (X)) < K
[ exp( oot ) M| < 207

Ca,

dar (Y, X)¥ exp <—d2M(Y’X)> dX

Ca,
By the computations in Subsection SM2.1, this inequality together with ¢ — 0 shows that:

d2,(Y, X)

(SM5) X" X" exp (— 552

Cp,

) anr(x) = (o)
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i.e. is a function that decreases exponentially when o — 0.
Therefore, the (unnormalized) moment of order k of the m-dimensional isotropic Gaussian
of covariance o?I writes:

(SM6)

O.k+m+2

>~ Rap(Y )M (1) + O(0™ ) + (o).
ab

SM3. Proof of Theorem SM1: Induced probability density on shapes. In this section
we prove the Theorem 1 of our paper. We recall Theorem 1 below.

Theorem SM1. The data X;’s are generated in the finite-dimensional Riemannian manifold
M following the model: X; = Exp(g; - Y,€;),i = 1...n, described in the paper. In this model:
(i) the action of the finite dimensional Lie group G on M, denoted -, is isometric, (ii) the
parameter Y is the template shape in the shape space Q, (iii) €; is the noise and follows a
(generalization to manifolds of a) Gaussian of variance o2, see Section 1 of the paper.

Then, the probability distribution function f on the shapes of the X;’s, i = 1...n, in the
asymptotic regime on an infinite number of data n — 400, has the following Taylor expansion
around the noise level o = 0:

1
f(2) = mexp <—

.Y, Z

M2(02)> (Fo(2) + 02 Fa(Z) + O(0") + €(0)

where (i) Z denotes a point in the shape space Q, (i) Fy and Fy are functions of Z involving
the derivatives of the Riemannian tensor at Z and the derivatives of the graph G describing
the orbit Oz at Z, and (iii) € is a function of o that decreases exponentially for o — 0.

We consider Z € B, i.e. in the geodesic ball of center Y and radius Y. We use a NCS at
Z. The notations are summarized on Figure SM2. The reader can refer to this Figure along
the proof.

The generative model implies the following Riemannian Gaussian distribution on the ob-
jects:

1 d2,(X,Y)
(S0 1= e (M)
where C)s(0) is the integration constant:
2
(SM8) Cu (o) :/ exp (—W) dM(X)
M 20

We compute the induced probability distribution f on shapes by integrating the distribu-
tion on the orbit of X out of f(Z):
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Figure SM2. Summary of the notations used in the proof of Theorem 1. The vectors of the tangent space
Tz M are in red.

We start by dividing the integral:

In the parenthesis, we call the first integral Iz (o) and the second term is an n(o):

£(Z) = Culo) " (Iz(0) + (o))

We compute the Taylor expansions of Cys(c)~! and Iz(o) for ¢ — 0 and show that
(o) = (o).

SM3.1. Taylor expansion of C;(c)~!. The integration constant Cj;(c) is the moment of
order 0 of the m-dimensional isotropic Gaussian of variance oI in the m-dimensional manifold
M. From Subsection SM2.3:

Cr(o) = (V2mo)™ + 5

m-+2

7 S R (Y ) (VIR "5 + O(0™) + (o)
ab

g

= (V2ro)™ + R(Y)(V2m)™ 4+ O(c™3) + €(0)
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where €(0) is exponentially decreasing wrt o and R(Y") is the scalar curvature of M at Y. Its
inverse:

-1
Carl0) ™! = ((mrf)m + W? R(Y)o™2 + O(c™+) + e<o>>

= (V2ro)™™. (1 + ER(Y) +0(c®) + 6(0))

2

= (V2mo)™™. <1 - %R(Y) +0(c®) + 6(0)>

SM3.2. Taylor expansion of /(o). Now we compute the integral Iz (o) involved in the

formula of f(Z):
a3, (Y, X
I(0) :/O . exp <—M;U’2)> dO(X)

We denote: B,, = B,,. We first perform the computations for any ¢. We recall that r is
fixed, and small enough in a sense made precise later.

SM3.2.1. Computing d3,(V, X). The first component of Iz(c) is d3,;(Y, X). We express
the Taylor expansion of d% for X € Oz close to Z.

First, we parameterize the point X. The points X, Z = 7(X) and the orbit Oz C M are
illustrated on Figure SM1: the orbit Oz = Oyx is the blue circle in M = R? going through
X and Z. The orbit Oz can be seen in the tangent space Tz M through the Logarithm map
at Z. For r small enough, i.e. for X close enough to Z, we can locally represent Oz in Ty M
as the graph of a smooth function G from 770 to NzO, using the vector u € TzOz around
u = 0:

I1:7T7,072 —T7;M =T7207 ® NzOz4
u > xqy = (u, G(u))

The local graph u — G(u) is illustrated on Figure SM1 and has the following Taylor expansion
around v = 0 in the NCS at Z:

1
Gu)" = §h§c(2)ubuc + G3(2)fjequuu? + Ga(Z)fogeuuuu® + O(JJul)

The 0-th and 1-th order derivatives of u — G(u) are zero because the graph goes through Z and
is tangent at TzOz. The second order derivative is by definition the second fundamental form
h(Z) introduced in Section 2 of the paper: h(Z) represents the best quadratic approximation
of the graph G. The third and fourth orders G3(Z) and G4(Z) are further refinements on the
shape of the graph G around Z.

Second, we compute the Taylor expansion of d?M(Y, X) with respect to wu:

3y (Y, X) = d3y (Y, Z) + " La(Z) + u*u”Map(Z) + uu"u Pape( Z) + u®u"uu? Sapea( Z) + O(|[u] ) |
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and our goal is to compute the different tensors.

Y and X are represented by their Riemannian Logarithms at Z: y = Log,Y, and z,, = Log, X.
We also recall: u”y = 0. Using these, we express the squared distance d?\/[ (Y, X) in the NCS
at Z. We use the formula p.23 in [SM1] with the notations Az + y — z,, and x < z:

d3; = dyr(Expy(z(u)), Expzy)

= Sap(y — 2u)"(y — 0)"

60
- @Rcadbxzxg(y - xu)a(y - xu)

15
- @ﬂfgl‘ivaRdbec(y - xu)a(y - xu)b(y - xu)c

3 e a C
- %mux5(44RgaebR96fd + 3vabR€Cfd)(y — )" (y — QUU)b(y — ) (y — xU)d

1
+ ﬁwzszhafbchhdge(y — 2y)"(y — xu)b(y — ) (y — xu)d(y — 2y)°

b

1
+ @xgxzxi(SRgdeaRgbfc - gvdaRebfc)(y - l‘u)a(y - xu)b(y - xu)c

5
- %xi$7{xg(8Rhaebchhfgd + thaebvhRngd
+ 20Rhaebvahcgd - 6Rhefavahcgd)(y - xu)a(y - xu)b(y - xu)c(y - xu)d

1
+ @xzxgxixqft(SRgcdaRgefb - 9vcdReafb)(y - mu)a(y - xu)b
1
+ @$g$zx£IZ(4Rhadbv6Rh fge + 4RndeaVoRnfge + 4RhdeaV s Rhpge

+ 3vdeabegc) (y - xu)a(y - $u>b(y - xu)c
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We express this in orders of x,:

3y = apy"y”
— 2(5abyaxz
1
- chadbmzxgyayd
1
+ ﬁxﬁxivaRdbecyaybyc

1
— @xi$£(44RgaebRgcfd + 3VabRecfd)yaybycyd
b,c,d, e

1
— ﬁxil'%Rhafbchhdgeyay yyy
2
+ ga:z:cﬁRcadbeyb
a, b, .c

1
— Tyt VaRaee(y"y* + 29"y 2)

1
- ﬁ$2$5(44RgaebRgcfd + BVabRecfd)(szybycyd + zyaybxzyd)

1
+ a»’v{iwﬁRhafchthge(4ﬂfﬁybycydye + yyPasyty©)

1
d b
- *xﬁ%ﬂﬁichdaebyay

3
1 d. e .f a, b, c
@l’u.ﬁu%’u(SRgdeaRgbfc - 9vdaRebfc)y vy
1
- @wiwﬂwi@RmechRh f9d + IRnaet Vi Ryega + 20 RhaehV f Rhegd — 6Refa Vo Rhcga)y "y y y"
1
- chadbexngxz

a,.b, .c

1
- ﬁxﬁxivaRdbeC(2$3$Zyc +ytaay)

1
— @xzxi(éléleaebRgcfd + 3VabRecfd)(2:1:Z:cZycyd + 2y“a:2xﬁyd + 2y“ybx5xg + 4x3ybxfbyd)
1
+ ﬁwixﬁRhafchthge(4x$x%ycydye + 4yaxzxzydye)
+ i:chavfa:g(8R Rypre — IVaaRepe) (x8y%y¢ + 2yl aC)
180 wtutu gdeallgbfc dallebfc wd'Y Y Ty Ty,
1
- @mzxq{wz(thaebchh tad + IRRaed Vi Rpegd + 20RnaetV t Rhegd — 6 Rie oV Ricga) @0y yy® + y P2ty
1
+ @mzxgmzmi(SRgdeaRgbfc - gvdaRebfc)yayb
1
+ ﬁ(‘thadbveRh foe + ARnaea VR fge + 4RndeaV f Ribge — 3V dea R oge) vy y°

+O(|lz]”)
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We replace 22 by 2 = u® + G(u)® where the expression of G(u) is a O(||u||?), so that:
d%J = d%\/l (Yv Z) - 25abyaub

1 1 1
- 26abyaG(u)b - chadbucudyayd + EuduevaRdbecyaybyc - ﬁueuf (44RgaebRQCfd + 3vabReCfd)yaybycyd

c, d, e

1
— ﬂufuthafbchhdgeyayby vy

2 2 2
- *Rcadbch(u)dyayd + 7udG(u)evaRdbecyaybyc - 7UEG(u)f(44RgaebRgcfd + 3vabRecfd)yaybycyd

3 12 180

2 2 1
— ﬁuf G(u)9 Rha bV e Rnagey vy y?y© + gucudRcadbuayb — EuduevaRdbec<UGybyc + 2y y )
— iueuf(44R Ryerd 4 3VapReera) (2uy y y® + 2y%y ucy?)

180 gaebilgcfd abdlecfd vyy vy Yy

1
+ 5zuf w9 Rpa oV e Rage (4u®y yyy® + y yPucyy®)

1 1
- gUCUdUeVCRdaebyayb + @udueuf (8RgdeaRgbfc — 9VdaRebfc)yaybyc

1
— @ueuf w9 (8 Rhaev Ve R fgd + IRnach ViR fega + 20RnaetV f Rhcgd — 6Rne oV Ricga) vy yy?
1 1
- chadbG(u)cG(u>dyayd + EG(u)dG(u)evaRdbecyaybyc

1
— @G(U)EG(U)f<44RgaebRgcfd + 3vabReCfd)yaybycyd

1 2

- 5*40(“)’0 G ()9 Rpa b Ve Rnagey™ "y y y® + gUCUdRcadbG(u)ayb
1

e R GOy + 293 Glw)”)

_ L e, f a, b, c, d a, b c,.d
180“ u (44RgaebRgcfd + 3vabRecfd)(2G(u) Y'Yyt + 29y G(u)Y")

1
+ SZufuthafchthge(4G(U)aybycydye + "y G (u)y y°)

1 1
— gucudG(u)eVCRdaebyGyb + 7udueG(u)f(8RgdeaRgbfc - 9vdaRebfc)yaybyc

180
B %ueufG(u)g(SRhaebchhfgd + 9Rnaet ViR fegd + 20 RnactV  Rhcgd — 6 Rie o Vo Rhegd) Yy y y"
- éRwdbucuduaub
B %uduevaRdbec(Zuaubyc +ytu’u’)
N %ueuf (44R gach Rocra + 3Vab Reca) (2u"uy y" + 2y uluy” + 2"y uu? + duy u’y?)

1
+ 5—4uf w9 Ry, fchthge(élu“ubycydye + 4y“ubucydy€)

1
+ @udufug (8RgdeaRgbfc - gvdaRebfc)(uaybyc + 2yaubuc)

1
- @ueuf w9 (8 Rhaev Ve R fgd + ORnach ViR fegd + 20 RnaevV f Rhcgd — 6Rne fa Vo Riega) (u®y yy® + vy uy?)

1
+ @ucudueuf (8RydeaRgbsc — IVaaRevse)y™y"

1
+ @(4RhadbveRh foe + 4Rndea VR tge + 4RndeaV t Rhvge — 3Vdea R oge) vy y°

+O(|[ull®)
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We replace G(u) by its Taylor expansion. Identifying the tensors gives:

Lo(Z) =0

Map(Z) = =y hap(Z2)" —
(SMY) 1
180

— aRhfag(Z)chhdbe( )yl y9ycyty©

1 1
gRacbd(Z)ycyd + 75 Valtaee(Z )yycy©

(44Rgeaf( )Rgcbd(Z) =+ 3vefRacbd( ))yeyfycyd

and Pyp.(Z) and Sypeq(Z) are tensors mixing the derivatives of the graph G and the derivatives
of the Riemannian curvature R of M at Z.

SM3.2.2. Computing dOz(X). The second component of Iz(o) is the measure of the
orbit dOz(X). We seek the Taylor expansion of the measure:

(SM10) d04(X) = (1 F To(Z)u — Nop(Z)ubul + 0(y|u|y3)) du

and our goal is, again, to express the tensors T.(Z) and N (Z).
The measure dOz(X) is the restriction of the measure dM(X):

dOz(X) = dM(X)|rx0,
and we know that for X close enough to Z: dM(X) = dx,, — tRice(Z2)zdal,dx,. Thus:
1
dOz(X) = (1 - gRicab(Z)xﬁxZ + O(||xu|\3)> dz,,

We replace 22 by z¢ = u® + 1h¢.(Z)ubu® + O(||ul[*)

dOz(X) = (1 — %Ricab(Z)uaub + (’)(Hu|]3)> dx,,

We express dx,, with respect to du:

a
dz —det<dx )du

( u® + Shi ( )ubuc+0(||u||4))>du

dub

= det <5b—|—2 W(Z)u’ + h (Z)u° (9(||u||3)> du
= det (6§ + hiy(Z)u’ +(9(Hu|| ))

Developing the determinant:

d, = (1 (2 4 o (820 — B2y (Z)u) + 0<uuu3>) du
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Plugging in dOz(X):
1 : a,b 3 a c
102 = (1= §Rica (2 + O(ul)) 1+ 18, (2)u)
+ (1= gRicw(@tat + ol ) (5 (0200 - ny2putlu(20) )
+ <1 — éRicab(Z)uaub + (’)(HuH3)> ((’)(HuHS)) du

We develop by keeping up to the quadratic terms only:

07 (X) = (1 - éRicab(Z)uaub + 1%, (Z)u’ + % ((ra(2)u)? = B (Z)ushly, (Z)u) + O(Hu|y3)> duy

We reorganize the terms, relabeling the mute labels:

1 1
07 (X) = (1 + hE,(Z)uf = CRic(Z)utu’ + 5 (hiy(Z)u ey (2)u” = hiy(Z)yuhi,(Z)u") + O(Hu||3)> duy
Now we can factorize the quadratic terms:

10200 = (14 (20 = o (({Rico2) + GHE(2(2) ~ SH2I2) ) + Ol ) dog

So that we find the expressions of the tensors:

1.2) = heu2)
SM11
- Na7) = SRica(Z) + M (D8(2) — 22

SM3.2.3. Gathering to compute /(o). We plug the expressions of d%,(Y, X) and dOz(X) ]
computed in the preivous subsections, in the expression of Iz(0):

Iy(0) = /B _ow <—d2M(Y’X)> d04(X)

202

Plugging the squared distance d3,(Y, X) first:

2 Y. 7 a bM 7 a,b,c VA a,b, c,d VA 5
I7(0) _/ exp <_dM( , Z) 4 uu’May(Z) + u'u’uPope(Z) + uu’uuSapca(Z) + O(||u]]”)
By,

= 52 > dOz(X)

We split the exponential and extract the part of the exponential that does not depend on u:

2 a,,b a, b, c a, b, c, d 5
I2(0) = exp (_W> / exp <_uuMb<Z>) exp <_u WU Pape(Z) + uuuu Sapea(Z) + O u >) "
BTZ

202 202 202
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We perform the Taylor expansion of the term with O(||u||*), recalling that at this point, o
can still be anything.

2 a,,b a,b, c a,b, c,d 5
dM(Y7Z)>/ exp (_UUMab<Z>> <1_uuu abC(Z)+UUuuSabcd(Z)"i_O(HuH )>dOZ
By,

Iz(0) = exp <—

202 202 202
Now we plug the dOz(X):
d2 Y. Z a bM VA a, b, c 7 a, b, c,d VA 5
M( ’ ))/ exp<uu ab( )) <1uuu abc( )+uuuusabcd( )+O(||u|| ))
By,

Iz(0) = exp (

202 202 202 207
(14 T (2) = Noy(Z)uu + O(|ul)) du

We develop the product of the parenthesis on the right:

Iy(0) = exp (JWY’Z)) /B e <_“”be(Z)> (1 + Tac(Z) — No(Z)ubuc + M) du

202 202 202
&,(Y, Z) utub My (2) oy udluuSgea(Z) | O(||ull®)
M\ 7 _ - e A) _ d
+ exp ( 52 /BTZ exp 552 O(||ul|*) = + 0 u I

By skew symmetry, the terms in T,u(Z) and u®u’u®P.(Z) integrate to 0. Moreover,
O([[ul[*), O([[ull?) become O([[ull*), O([ul|®):

I2(0) = exp (‘W) /B o <_W>

a, b, c,d 6
uuwuuSeped(Z) | O(||ul| )) du

b 4
(1 Na@yatuc + (1) et Z) 4 O

We recognize the unnormalized truncated Gaussian moments of in RP, where p is the dimension
of the orbit Oy, see Subsection SM2.2:

Iz(0) = exp <—CZ%\42(UY;Z)>

. <Mrz (UQM*I) _ Ncb(Z)M?CZ (0.2M71) + O(O’p+4) B M

p+6
= Mggcd(o_QMfl)_i_ O(U )) I

202

We express them in terms of the unnormalized Gaussian moments in RP, see Subsection SM2.2:

1) = xp (B2,

p+6
. <UPM(M_1) + Nap(Z)oP 2 M(M1)be — %JPMM(M_I)“M + 00" + O(LQ) + 6(0)>
g o
We simplify the o’s:
d3, (Y. Z)
IZ(U):eXp (_M .
Sabcd(Z)

. (UPM(M_1)0+UP+2 (Nch(M_l)bc_ 2

M(M‘l)“b“‘) + O(aP™) + e(a)> I
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For convenience in the later computation, we define the notations:

2
Iz7(0) =exp (—W) (cPmo(Z) + P 2my(Z) + O(o) + e(o))
where:
Lo mo(Z) = M(M)" = /(2m)P\/det (Man(2) 1)
( ) m2(Z) = Nap(Z)M(M~H(2))* — % abed(Z)M(M~H(Z))2ed

where My, and Sy peq are given in the previous subsections.

SM3.3. Upper bound on 7(c). We proceed with an adaptation of the method in Sub-

section SM2.1:
2 (Y, X
o) = [ e (-2 a0
OzﬂcBr 20

Assuming that the Ricci curvature of the orbit is bounded by below, the measure of the orbit
is bounded by above, by a constant that we write Ko:

d2
exp —7M(Y’ X) du
202

We integrate on the orbit by filiating it with hyperspheres of radii p:

+oo 2
el <Ko [ [ e (—Pz) 4(S, N 02)dp
r $,N0z 20
+oo 2

= Ko/ exp (—%) Vol(S, N Oz)dp

In(o)ll < Ko |

OzﬂCBT

20

Now the volume of S, N Oz is polynomial in p. We denote P this polynom:

Into)ll < Ko [ e (- s ) Plorie

202
By dominated convergence theorem, the right-hand-side is dominated by exp( —%) Thus:
(SM13) n(o) = €(o)

i.e. 0 — n(o) is exponentially decreasing when o — 0.

SM3.4. Final result: Taylor expansion of f(Z). Replacing the terms:

f(2) =

(1_ LQR(Y)+O(0'3)+€(U)> 3, (Y. Z)
W (e (247

> (cPmo(Z) + P 2my(Z) + O(aP™) + e(o)) + e(o’))
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We put the € inside the main parenthesis:

(1 — ZR(Y) 4+ O(c3) + 6(0))

12) = (V2mo)m
2 2
o (=) (a7mo(2) + 07 2ma(2) + 0 + (o) +exp (+ 4D ) (o)) g
We recall that Z € B, so that:
(1 — ZR(Y) +0(a3)) 2.2\, ) )
f(Z)= (Varo)™ . exp <_N[202> (O‘ mo(Z) + oP2my(Z) + O(aPT) + 6(0’)) I
We define:

exp (_ dﬁl(Y,Z)>

202

(V2mo)4

fo(Z) =
and put it in the front, remembering that m = p + ¢:

1- ZR(Y) + 0(03))
(V2mo)P

[(Z) = fo(Z) ( (oPmo(2) + P 2my(Z) + O(aPT) + e(0))

We divide by oP:

mo(Z) e ma(Z)
(v/2m)P (Ver)p

We develop everything except the Gaussian in front:

12) = fol2) (1- SR + 0. +0() + o))

m 02 m m
£(2) = fo(2) <(\/°2L7TZ)1 -5 (;Q%Z)lR(Z) + 02%} +O(0h) + e(a))

We write this:
F(Z) = fq(Z) (Fo(Z) + 0 Fa(Z) 4+ O(0*) + €(0))

where:
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And:
Fy(2) = —2%13(2) * (m2\/2(7r2)3?
- _é\/det (Man(2)"DR(Z) + %i
So that:
Fo(Z) = \/det (Mo (2) 1)
(SM14) Fo(2) = _é\/det (Map(Z)""R(Z) + (7712\/2%1

and we refer to the previous subsections for the formula of M,,(Z) and ma(Z).

SM4. Proof of Theorem SM2: Bias on the template shape. Now we prove the second
theorem given in the paper " Template shape estimation”.

Theorem SM2. The data X;’s are generated with the model described in the paper ”Tem-
plate shape estimation”, where the template shape Y is a parameter and under the assumptions
of Theorem 1. The template shape Y is estimated with f’, which 1s computed by the usual
procedure described the paper.

In the regime of an infinite number of data n — 400, the asymptotic bias of the template’s
shape estimator }A/, with respect to the parameter Y, has the following Taylor expansion around
the noise level 0 = 0:

(SM15) Bias(Y,Y) = —";H(Y) + O(0*) + (o)

where (i) H is the mean curvature vector of the template shape’s orbit which represents the
external curvature of the orbit in M, and (ii) € is a function of o that decreases exponentially
for o — 0.

We compute the bias Bias(Y, Y) of Y as an estimator of Y. In the following, we take a

NCS at Y. In particular, the vector ﬁ = Logy Z has coordinates written z.

The expectation of the distribution f of shapes in @ is Y by definition. The point Y,
expressed in a NCS at the template Y, gives Bias(Y, Y), a tangent vector at Ty M that
indicates how much one has to shoot to reach the estimator Y

(SM16) Bias(Y, V) = Logy ¥ = / YZ1(2)dQ(Z).
Q
First, we take a ball of small radius r in @) and fix r. We split the integral:

Bias(Y,Y) = /

B

Y2200 + | V21(2)0(2)
. C o

r

By the result of the preliminaries, adapted to @, the right part is a function o — €(o) that is
exponentially decreasing for o — 0.

Bias(Y,V) = /BQ YZ(2)dQ(Z) + (o)
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SM4.1. Using the result of Theorem SM1. We plug the expression of the density f
using Theorem SM1:

Bias(Y,Y) = /B ﬁf@ Z) (Fy(Z) + 0*Fo(Z) + O(0*) + €(0)) dQ(Z) + €(o)
:/B Y2 fo(2) (Fo(Z) + 0*Fa(Z) + O(0%) + ¢(0)) dQ(Z) + (o)

Computing the a-coordinate of the bias:

Bias(Y,Y)* = /BQ 2" fo(Z) (Fy(Z) + 0*Fo(Z) + O(0*) + €(0)) dQ(Z) + €(o)

v

We are on a ball of small radius r around Y. We write the Taylor expansions of the F’s terms
around z = 0:

Fo(Z) = Foo(Y) + Fora(Y)z* + O(||2] )
Fy(Z) = Foo(Y) + Fa(Y)2% + O(||2] %)

We replace these Taylor expansions in the expression of the bias:

Bias(V.V)" = [ 27(2) (F(¥) + Fua(¥)"+ O( 2| Q(2)

+ /B = fo(2) (U2F20(Y) + 02 Foa(YV)2% + 020(||2]]2) + O(o*) + 6(0)) dQ(Z) + €(o) I
Reorganizing:

Bias(Y,Y) = /B L fa(2) (FOO(Y) ¥ Foua(Y)2? + 02 Fa(Y) + 02F21d(Y)zd) dQ(Z)

+/B YZ1o(2) (O([2]%) + *O(||2]1%) + O(c*) + () dQ(2)

+ ¢(o)

By the dominated convergence theorem, we can put the inside €(o) outside the parenthesis.

Bias(V.Y) = [ 20(Z) (Fun(Y) + Fona(Y)2" +0*Fao(Y) +0*Fana(V)=") dQ(2)

+/ YZfo(2) (O(I212) + 0*O(||2|12) + O(a*)) dQ(2)

+€(o)
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We develop the measure on dQ: dQ(Z) = (1 — £Ric(Y)y22° + O(||2|[?))d=
Bias(Y,Y)? / fo(Z Foo )24 + FOld(Y)z“zd) (1-— 6Ric(Y)bczsz + O(|)2]®))d=
1
/ fo(Z o* 2Fo0(Y) 2 + J2F21d(Y).z“zd) (1-— éRic(Y)bczbzc + O(||12|1?))d=

/ Fa(2)=" (O(I2I?) + *O(|IzI1?) + O(5") (1~ ZRic(¥ ez + O(]*))dz

We develop:

Bias(Y, V)" = , fe(2) (FOO(Y)Za + Fona(Y)z"2 4+ 02 Foo (YV) 2" + 0'2F21d(Y)-Zazd> dz
BS
1_. c
Ja(2) (FOO(Y)Za + Fona(Y)2"2" ) (=2 Rie(Y )pe22)d
1
/ folZ a 2Fo0(Y) 2 + O'2F21d(Y).ZaZd> (—éRic(Y)bczbzc)dz

/ Fa(2) (Foo(¥)2" + Funa(V)22 4 0> Fan(Y)2* 4 0> Fana(¥).220) O[22

/ Ja(2)2 (O(I212) + *O(||212) + O(a*)) d
/ Fa(2)=" (O(I2I1?) + *O(|IzI[?) + O(6")) (~ ZRic(¥ ")z
/ Ja(2)2% (O(I2112) + *O(||212) + O(a*)) O(1[2]1*)d=

We eliminate the odd terms that give 0 by skewsymmetry:

Bias(Y,V)? / folZ +F01d V)21 —I—J2F21d(Y).z“zd> dz
/ fo(z Fmd )2 zd+02F21d(Y).z“zd) (—%Ric(Y)bczsz)dz
/ Fo(2) (Foo(Y)=" + 0® Fao(Y)22) O(|2]*)d=
+/B£~> fo(Z2)2" (0(c")) dz
4 / Jo(2)2% (0(c") (—éRic(Y)bczbzc)dz
/ fo(2)2" (O(|2]1%) + *O(||2]]*) + O(a*)) O(|||[*)d=
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We delete the terms that will give more than O(c?) by integration (these are normalized
moments) and put them in O(o*) which is the next order since there is noO(o3):

Bias(Y,Y)* = o fo(Z)Fora(Y)22%dz + /BQ fo(Z)z" ((9(04)) dz + O(c*) + €(o)

We gather the terms in O(c%):
Bias(Y, V)" = | fo(Z)Fua(Y)2"2"dz + O(c") + e(0)
BS

We recognize the normalized truncated moment of order 2 in the g-dimensional Riemannian
manifold @, see Subsection SM2.3:

Bias(Y, V)" = Fora(Y)M2"(6°I) + O(0*) + (o)

We express it with respect to the non-truncated normalized moment in R?, see Subsec-
tion SM2.3:

Bias(Y; V)" = Foua(Y) (2M*(1) + O(0*) = e(0)) + O(6*) + (o)
We gather the ¢’s and the O(c?):
Bias(Y, V)® = Fya(Y)o2MR"(D) + O(c*) + (o)

We replace the normalized 2nd order moment by its expression which is simply §%¢, see
Subsection SM2.2:

Bias(Y,Y)® = Fya(Y)o26% + O(0?) 4 € (o)
= FE (Yo% 4+ O(a) + €(0)

SM4.2. Computation of F§,(Y): Taylor expansion of F{(Z) in the coordinate z. The
term F§;(Y) is the first order coefficient in the Taylor expansion of Fy(Z) around Y in the
coordinate z. Thus, we compute this Taylor expansion.

We first compute the Taylor expression of Fy(Z) using the coordinate y = Z—)} = Log;Y
in the NCS at Z. The expression of F(Z) in Section 7?7 gives:

Fo(Z) = ©z0(1) = v/ (2m)Py/det (Map(Z2) 1)

The previous subsections give:
Map(Z) = —ychay(Z) + dav(Z)
and we replace dg,(Z) by the formula p.23 in [SM1] but keeping only the first order:

Map(Z) = bab — yehip (V) + O(lyll*)
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So that:
Man(Z)™1 = 8a + yehiy (V) + O(llyl[?)
We plug this in Fy(Z):

Fo(Z) = \Jdet (8us + uehy (V) + Oyl )
= \/1+ yeTrace(h, (V) + O(ly|?)
= T+ g H(Y) + O([ly]?)

_ <1 s L) + 0<uy\|2>)

where the trace of the second fundamental form is the external curvature vector H(Y') by
definition.

We convert this Taylor expansion in y, the coordinate of Y in a NCS at Z, into a Taylor
expansion in z, the coordinate of Z in a NCS at Y. To express y with respect to z, we consider
the geodesic yzy (t) from Z to Y and the geodesic vy z(t) from Y to Z. When parameterized
by the arclength s, they are related as follows:

Vzy (s) = Expy (5Z7>
=yz(1—s)
= Expy ((1 - s)ﬁ)
Differentiating this relation gives:
DEpo|8ﬁ.Z—§} = 7DEXpy|(1_8)ﬁ.ﬁ
Taking the relation at s = 0:
DEXpZ|0.Z—>Y = —DEpr|Y—Z>.ﬁ
where DExp,|o = Id, so that:
y = —DExpy|,.z

We use the definition of the NCS at Y. When Expy-(u) = U, then U has coordinates u in the
NCS at Y. So that: DExpy-|y.u = u. This gives, with u = z:

y=—z

and we get the Taylor expansion of Fy(Z) expressed in the coordinate z:
1
Fo(2) = (1= et () + Ol )
And we identify the term F§;(Y) needed:

Fi(Y) = — (V)
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SM4.3. Final result: Taylor expansion of Bias(Y,Y). Replacing F (Y) by its value
computed above:

Bias(Y,Y )% = —%.H“(Y)(# + O(o*) + €(0)
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