Article Dans Une Revue Wave Motion Année : 2017

Analytical solution to the 1D nonlinear elastodynamics with general constitutive laws

Résumé

Under the hypothesis of small deformations, the equations of 1D elastodynamics write as a 2 × 2 hyperbolic system of conservation laws. Here, we study the Riemann problem for convex and nonconvex constitutive laws. In the convex case, the solution can include shock waves or rarefaction waves. In the nonconvex case, compound waves must also be considered. In both convex and nonconvex cases, a new existence criterion for the initial velocity jump is obtained. Also, admissibility regions are determined. Lastly, analytical solutions are completely detailed for various constitutive laws (hyperbola, tanh and polynomial), and reference test cases are proposed.
Fichier principal
Vignette du fichier
Version1.pdf (545.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01350116 , version 1 (07-08-2016)

Identifiants

Citer

H Berjamin, Bruno Lombard, Guillaume Chiavassa, N Favrie. Analytical solution to the 1D nonlinear elastodynamics with general constitutive laws. Wave Motion, 2017, 74, pp.35-55. ⟨10.1016/j.wavemoti.2017.06.006⟩. ⟨hal-01350116⟩
281 Consultations
450 Téléchargements

Altmetric

Partager

More