Passively testing routing protocols in Wireless Sensor Networks - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2015

Passively testing routing protocols in Wireless Sensor Networks

Résumé

Smart systems are today increasingly developed with the number of wireless sensor devices that drastically increases. They are implemented within several contexts through our environment. Thus, sensed data transported in ubiquitous systems are important and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed to wireless sensor networks (WSN). However, one stage that is often neglected before their deployment, is the conformance testing process, a crucial and challenging step. Active testing techniques commonly used in wired networks are not suitable to WSN and passive approaches are needed. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. We show that our approach may model and passively test common and particular test objectives illustrating its flexibility, genericity and practicability. As far as we know, this is the first work on formal passive testing of routing protocols in wireless sensor networks

Dates et versions

hal-01348000 , version 1 (22-07-2016)

Identifiants

Citer

Xiaoping Che, Stephane Maag, Hwee-Xian Tan, Hwee-Pink Tan. Passively testing routing protocols in Wireless Sensor Networks. UIC 2015 : 12th IEEE International Conference on Ubiquitous Intelligence and Computing, Aug 2015, Pekin, China. pp.270 - 277, ⟨10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.59⟩. ⟨hal-01348000⟩
71 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More