Satisfying more than half of a system of linear equations over GF(2): A multivariate approach - Archive ouverte HAL
Article Dans Une Revue Journal of Computer and System Sciences Année : 2014

Satisfying more than half of a system of linear equations over GF(2): A multivariate approach

Résumé

In the parameterized problem MaxLin2-AA[k ], we are given a system with variables x1,…,xnx1,…,xn consisting of equations of the form ∏i∈Ixi=b∏i∈Ixi=b, where xi,b∈{−1,1}xi,b∈{−1,1} and I⊆[n]I⊆[n], each equation has a positive integral weight, and we are to decide whether it is possible to simultaneously satisfy equations of total weight at least W/2+kW/2+k, where W is the total weight of all equations and k is the parameter (it is always possible for k=0k=0). We show that MaxLin2-AA[k ] has a kernel with at most View the MathML sourceO(k2logk) variables and can be solved in time 2O(klogk)(nm)O(1)2O(klogk)(nm)O(1). This solves an open problem of Mahajan et al. (2006). The problem Max-r-Lin2-AA[k,rk,r] is the same as MaxLin2-AA[k] with two differences: each equation has at most r variables and r is the second parameter. We prove that Max-r-Lin2-AA[k,rk,r] has a kernel with at most (2k−1)r(2k−1)r variables.
Fichier principal
Vignette du fichier
mlinJ5b.pdf (361.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01347776 , version 1 (21-07-2016)

Identifiants

Citer

Robert Crowston, Michael Fellows, Gregory Gutin, Mark Jones, Eun Jung Kim, et al.. Satisfying more than half of a system of linear equations over GF(2): A multivariate approach. Journal of Computer and System Sciences, 2014, 80 (4), ⟨10.1016/j.jcss.2013.10.002⟩. ⟨hal-01347776⟩
213 Consultations
475 Téléchargements

Altmetric

Partager

More