Dempster-Shafer fusion in triplet partially Markov chains
Fusion de Dempster-Shafer dans les chaînes triplet partiellement de Markov
Résumé
Hidden Markov Chains (HMC), Pairwise Markov Chains (PMC), and Triplet Markov Chains (TMC), allow one to estimate a hidden process X from an observed process Y. More recently, TMC have been generalized to Triplet Partially Markov chain (TPMC), where the estimation of X from Y remains workable. Otherwise, when introducing a Dempster-Shafer mass function instead of prior Markov distribution in classical HMC, the result of its Dempster-Shafer fusion with a distribution provided Y = y, which generalizes the posterior distribution of X, is a TMC. The aim of this Note is to generalize the latter result replacing HMC with multisensor TPMC.
Les Chaînes de Markov Cachées (CMC), Chaînes de Markov Couple (CMCouple), ou Chaînes de Markov Triplet (CMT), permettent d'estimer un processus caché X à partir d'un processus observé Y. Récemment, les CMT ont été généralisées aux Chaînes Triplet Partiellement de Markov (CTPM), où l'estimation de X demeure possible. Par ailleurs, lorsque dans une CMC classique la loi a priori est remplacée par une masse de Dempster-Shafer, le résultat de la fusion de cette dernière avec une loi définie par Y = y, qui généralise la loi a posteriori de X, est une CMT. L'objet de cette Note est de généraliser ce dernier résultat de CMC aux CTPM multicapteur