An analogue of Kac-Rice formula for Euler characteristic - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

An analogue of Kac-Rice formula for Euler characteristic

Résumé

Given a deterministic function f : R 2 → R satisfying suitable assumptions , we show that for h smooth with compact support, R χ({f u})h(u)du = R 2 γ(x, f, h)dx, where χ({f u}) is the Euler characteristic of the excursion set of f above the level u, and γ(x, f, h) is a bounded function depending on ∇f (x), h(f (x)), h ′ (f (x)) and ∂ ii f (x), i = 1, 2. This formula can be seen as a 2-dimensional analogue of Kac-Rice formula. It yields in particular that the left hand member is continuous in the argument f , for an appropriate norm on the space of C 2 functions. If f is a random field, the expectation can be passed under integrals in this identity under minimal requirements, not involving any density assumptions on the marginals of f or his derivatives. We apply these results to give a weak expression of the mean Euler characteristic of a shot noise process, and the finiteness of its moments.
Fichier principal
Vignette du fichier
v1arXiv.pdf (298.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01346935 , version 1 (20-07-2016)

Identifiants

Citer

Raphaël Lachièze-Rey. An analogue of Kac-Rice formula for Euler characteristic. 2016. ⟨hal-01346935⟩
109 Consultations
254 Téléchargements

Altmetric

Partager

More