Efficient semiparametric estimation and model selection for multidimensional mixtures - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2018

Efficient semiparametric estimation and model selection for multidimensional mixtures

Résumé

In this paper, we consider nonparametric multidimensional finite mixture models and we are interested in the semiparametric estimation of the population weights. Here, the i.i.d. observations are assumed to have at least three components which are independent given the population. We approximate the semiparametric model by projecting the conditional distributions on step functions associated to some partition. Our first main result is that if we refine the partition slowly enough, the associated sequence of maximum likelihood estimators of the weights is asymptotically efficient, and the posterior distribution of the weights, when using a Bayesian procedure, satisfies a semiparametric Bernstein von Mises theorem. We then propose a cross-validation like procedure to select the partition in a finite horizon. Our second main result is that the proposed procedure satisfies an oracle inequality. Numerical experiments on simulated data illustrate our theoretical results.
Fichier principal
Vignette du fichier
EEJR1_EJS_EG.pdf (530.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01345919 , version 1 (17-07-2016)
hal-01345919 , version 2 (12-12-2017)

Identifiants

Citer

Elisabeth Gassiat, Judith Rousseau, Elodie Vernet. Efficient semiparametric estimation and model selection for multidimensional mixtures. Electronic Journal of Statistics , 2018, 12 (1), pp.703-740. ⟨hal-01345919v2⟩
312 Consultations
222 Téléchargements

Altmetric

Partager

More