High-level synthesis for event-based systems
Abstract
This paper envisions a design flow for empowering designers in the fast development of low-power event-driven processing chains. This flow takes advantage of level-crossing sampling schemes and asynchronous circuitry. Event-driven paradigm allows better-than-worst-case performance during periods of high-activity of the captured signal as well as a natural stand-by during low-activity periods. The proposed flow uses the specific knowledge of the targeted application and its signals, and a high-level description of the processing algorithm to synthesize a dedicated analog-to-digital converter, which performs the level-crossing sampling, and a digital signal processing unit. The latter is synthesized thanks to a high-level synthesis algorithm following a control/datapath decomposition style. The asynchronous control part is based on distributed asynchronous controllers while the datapath remains similar to a synchronous datapath.