Characterization and modeling of a spinning thermoacoustic instability in an annular combustor equipped with multiple matrix injectors - Archive ouverte HAL
Article Dans Une Revue Journal of Engineering for Gas Turbines and Power Année : 2015

Characterization and modeling of a spinning thermoacoustic instability in an annular combustor equipped with multiple matrix injectors

Résumé

Oscillations in fully annular systems coupled by azimuthal modes are often observed in gas turbine combustors but not well documented. One objective of the present study is to characterize this type of oscillation in a laboratory scale system, allowing detailed pres- sure measurements and high speed visualization of the flame motion. The experiment is designed to allow detailed investigations of this process at a stable limit cycle and for an extended period of time. Experiments reported in the present article are carried out in the MICCA facility which was used in our previous work to analyze instabilities arising when the chamber backplane was equipped with multiple swirling injectors (Bourgouin et al., 2013, “Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal Acoustic Modes,” ASME Paper No. GT2013-95010). In the present study, these units are replaced by a set of matrix injectors. The annular plenum feeds 16 such devices confined by two cylindrical quartz tubes open to the atmosphere. The multiple flames formed by the matrix injectors are laminar and have a well documented describing function. This constitutes an ideal configuration allowing systematic investigations of thermo-acoustic oscillations coupled by longitudinal or azimuthal modes while avoid- ing complexities inherent to swirling turbulent flames studied previously. Optical access to the chamber allows high speed imaging of light emission from the flames providing instantaneous flame patterns and indications on the heat release rate fluc- tuations. Eight waveguide microphones record the pressure signal at the combustor injection plane and in the plenum. Among the unstable modes observed in this setup, this analysis focuses on situations where the system features a spinning azimuthal mode. This mode is observed at a frequency which is close to that associated with the 1A mode of the plenum. A theoretical analysis is then carried out to interpret the angular shift between the nodal lines in the plenum and chamber, and the meas- ured flame describing function (FDF) is used to quantify this shift and determine the linear growth rate.
Fichier non déposé

Dates et versions

hal-01344937 , version 1 (12-07-2016)

Identifiants

Citer

Jean-François Bourgouin, Daniel Durox, J. Moeck, Thierry Schuller, Sébastien Candel. Characterization and modeling of a spinning thermoacoustic instability in an annular combustor equipped with multiple matrix injectors. Journal of Engineering for Gas Turbines and Power, 2015, 137 (2), pp.021503. ⟨10.1115/1.4028257⟩. ⟨hal-01344937⟩
116 Consultations
0 Téléchargements

Altmetric

Partager

More