Inverse algorithms for 2D shallow water equations in presence of wet dry fronts. Application to flood plain dynamics - Archive ouverte HAL
Article Dans Une Revue Advances in Water Resources Année : 2016

Inverse algorithms for 2D shallow water equations in presence of wet dry fronts. Application to flood plain dynamics

Résumé

The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving ac- curate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational in- verse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite vol- ume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The iden- tification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.
Fichier principal
Vignette du fichier
MonnierEtal-AWR-draft.pdf (8.97 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01344008 , version 1 (11-07-2016)
hal-01344008 , version 2 (12-03-2019)

Identifiants

  • HAL Id : hal-01344008 , version 1

Citer

Jerome Monnier, Frédéric Couderc, Denis Dartus, Kévin Larnier, R Madec, et al.. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts. Application to flood plain dynamics. Advances in Water Resources, 2016. ⟨hal-01344008v1⟩
428 Consultations
681 Téléchargements

Partager

More