Recurrence complexity analysis of oscillatory signals with application to general anesthesia EEG signals - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Recurrence complexity analysis of oscillatory signals with application to general anesthesia EEG signals

Résumé

Recurrence structures in univariate time series are challenging to detect. We propose a combination of recurrence and symbolic analysis in order to identify such structures in a univariate signal. This method allows to obtain symbolic representation of the signal and quantify it by calculating its complexity measure. To this end, we propose a novel method of phase space reconstruction based on the signal's time-frequency representation and show that the proposed method outperforms conventional phase space reconstruction by delay embedding techniques. We evaluate our method on synthetic data and show its application to experimental EEG signals.
Fichier principal
Vignette du fichier
Manuscript.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01343631 , version 1 (08-07-2016)

Identifiants

  • HAL Id : hal-01343631 , version 1

Citer

Mariia Fedotenkova, Peter Beim Graben, Tamara Tošić, Jamie Sleigh, Axel Hutt. Recurrence complexity analysis of oscillatory signals with application to general anesthesia EEG signals. 2016. ⟨hal-01343631⟩
489 Consultations
253 Téléchargements

Partager

More