Cyclic tridiagonal pairs, higher order Onsager algebras and orthogonal polynomials - Archive ouverte HAL
Article Dans Une Revue Linear Algebra and its Applications Année : 2017

Cyclic tridiagonal pairs, higher order Onsager algebras and orthogonal polynomials

Résumé

The concept of cyclic tridiagonal pairs is introduced, and explicit examples are given. For a fairly general class of cyclic tridiagonal pairs with cyclicity N , we associate a pair of 'divided polynomials'. The properties of this pair generalize the ones of tridiagonal pairs of Racah type. The algebra generated by the pair of divided polynomials is identified as a higher-order generalization of the Onsager algebra. It can be viewed as a subalgebra of the q−Onsager algebra for a proper specialization at q the primitive 2Nth root of unity. Orthogonal polynomials beyond the Leonard duality are revisited in light of this framework. In particular, certain second-order Dunkl shift operators provide a realization of the divided polynomials at N=2 or q=i.
Fichier principal
Vignette du fichier
1607.00606.pdf (418.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01341852 , version 1 (05-07-2016)

Identifiants

Citer

Pascal Baseilhac, A. M. Gainutdinov, Thi Thao Vu. Cyclic tridiagonal pairs, higher order Onsager algebras and orthogonal polynomials. Linear Algebra and its Applications, 2017, 522, pp.71-110. ⟨10.1016/j.laa.2017.02.009⟩. ⟨hal-01341852⟩
130 Consultations
140 Téléchargements

Altmetric

Partager

More