On coding effects in regularized categorical regression - Archive ouverte HAL
Article Dans Une Revue Statistical Modelling Année : 2016

On coding effects in regularized categorical regression

Résumé

This discussion is a continuation of Tutz and Gertheiss (2016)’s paper, where we focus on the importance of the coding of effects in regularized categorical and ordinal regression. We show that, though that an appropriate regularization is profitable for any coding, the choice of a relevant coding can prevail over the one of the regularization term for revealing structures. We focus on predictors though the issues raised also apply to responses. We illustrate our point on a classic data set.
Fichier non déposé

Dates et versions

Identifiants

Citer

Julien Chiquet, Yves Grandvalet, Guillem Rigaill. On coding effects in regularized categorical regression. Statistical Modelling, 2016, 16 (3), pp.228-237. ⟨10.1177/1471082X16644998⟩. ⟨hal-01338164⟩
214 Consultations
1 Téléchargements

Altmetric

Partager

More