A Baxter class of a different kind, and other bijective results using tableau sequences ending with a row shape
Résumé
Tableau sequences of bounded height have been central to the analysis of $k$-noncrossing set partitions and matchings. We show here that families of sequences that end with a row shape are particularly compelling and lead to some interesting connections. First, we prove that hesitating tableaux of height at most two ending with a row shape are counted by Baxter numbers. This permits us to define three new Baxter classes which, remarkably, do not obviously possess the antipodal symmetry of other known Baxter classes. Oscillating tableau of height bounded by $k$ ending in a row are in bijection with Young tableaux of bounded height 2$k$. We discuss this recent result, and some
generating function implications. Many of our proofs are analytic in nature, so there are intriguing combinatorial bijections to be found.
Les séquences de tableau de hauteur bornée sont au centre de l’analyse des partages et couplages. Nous montrons que les familles de séquences qui se terminent par une seule ligne sont particulièrement fascinantes. Tout d’abord, nous prouvons que les tableaux hésitants de hauteur au plus deux se terminant par une seule ligne sont dénombrés par les nombres de Baxter. Cela nous permet de définir trois nouvelles classes Baxter qui, remarquablement, ne possèdent évidemment pas la symétrie antipode des autres classes Baxter connus. Nous discutons le résultat récent qui dit que les tableaux oscillants de hauteur au plus $k$ se terminant dans une ligne sont en bijection avec les tableaux de Young de hauteur au plus 2$k$. Nos preuves sont analytiques, il y a donc des bijections combinatoires
intrigantes à trouver.
Origine | Fichiers produits par l'(les) auteur(s) |
---|