Lattice structure of Grassmann-Tamari orders
Résumé
The Tamari order is a central object in algebraic combinatorics and many other areas. Defined as the transitive closure of an associativity law, the Tamari order possesses a surprisingly rich structure: it is a congruence-uniform lattice. In this work, we consider a larger class of posets, the Grassmann-Tamari orders, which arise as an ordering on the facets of the non-crossing complex introduced by Pylyavskyy, Petersen, and Speyer. We prove that the Grassmann-Tamari orders are congruence-uniform lattices, which resolves a conjecture of Santos, Stump, and Welker. Towards this goal, we define a closure operator on sets of paths inside a rectangle, and prove that the biclosed sets of paths, ordered by inclusion, form a congruence-uniform lattice. We then prove that the Grassmann-Tamari order is a quotient lattice of the corresponding lattice of biclosed sets.
L’ordre Tamari est un objet central dans la combinatoire algébrique et de nombreux autres domaines. Définie comme la fermeture transitive d’une loi d’associativité, l’ordre Tamari possède une structure étonnamment riche: il est un treillis congruence uniforme. Dans ce travail, nous considérons une classe plus large de posets, les ordres Grassmann-Tamari, qui découlent comme un ordre sur les facettes du complexe non-croisement introduit par Pylyavskyy, Petersen, et Speyer. Nous démontrons que les ordres Grassmann-Tamari sont treillis congruence uniformes, ce qui résout une conjecture de Santos, Stump, et Welker. Pour atteindre cet objectif, nous définissons un opérateur de fermeture sur des ensembles de chemins à l’intérieur d’un rectangle, et prouver que les ensembles bifermé de chemins, ordonné par inclusion, forment un réseau de congruence uniforme. Nous démontrons ensuite que l’ordre Grassmann-Tamari est un treillis quotient du treillis correspondant d’ensembles bifermés.
Origine | Fichiers produits par l'(les) auteur(s) |
---|