On bijections between monotone rooted trees and the comb basis
Résumé
Let $A$ be an $n$-element set. Let $\mathscr{L} ie_2(A)$ be the multilinear part of the free Lie algebra on $A$ with a pair of compatible Lie brackets, and $\mathscr{L} ie_2(A, i)$ the subspace of $\mathscr{L} ie_2(A)$ generated by all the monomials in $\mathscr{L} ie_2(A)$ with $i$ brackets of one type. The author and Dotsenko-Khoroshkin show that the dimension of $\mathscr{L} ie_2(A, i)$ is the size of $R_{A,i}$, the set of rooted trees on $A$ with $i$ decreasing edges. There are three families of bases known for $\mathscr{L} ie_2(A, i)$ the comb basis, the Lyndon basis, and the Liu-Lyndon basis. Recently, González D'León and Wachs, in their study of (co)homology of the poset of weighted partitions (which has close connection to $\mathscr{L} ie_2(A, i)$), asked whether there are nice bijections between $R_{A,i}$ and the comb basis or the Lyndon basis. We give a natural definition for " nice bijections " , and conjecture that there is a unique nice bijection between $R_{A,i}$ and the comb basis. We show the conjecture is true for the extreme cases where $i=0$, $n−1$.
Soit $A$ un ensemble à $n$ éléments. Soit $\mathscr{L} ie_2(A)$ la partie multilinéaire de l'algèbre de Lie libre sur $A$ avec une paire de crochets de Lie compatibles et $\mathscr{L} ie_2(A, i)$ le sous-espace de$\mathscr{L} ie_2(A)$ généré par tous les monômes en $\mathscr{L} ie_2(A)$ avec $i$ supports d'un même type. L'auteur et Dotsenko-Khoroshkin montrent que la dimension de $\mathscr{L} ie_2(A, i)$ est la taille de la $R_{A,i}$, l'ensemble des arbres enracinés sur $A$ avec $i$ arêtes décroissantes. Il y a trois familles de bases connues pour $\mathscr{L} ie_2(A, i)$ : la base de peigne, la base Lyndon, et la base Liu-Lyndon. Récemment, Gonzalez, D' Léon et Wachs, dans leur étude de (co)-homologie de la poset des partitions pondérés, ont demandé si il y a des bijections jolies entre$R_{A,i}$, et la base de peigne ou la base Lyndon. Nous donnons une définition naturelle de "bijection jolie " , et un conjecture qu'il y a une seule bijection jolie entre $R_{A,i}$, et la base de peigne. Nous montrons que la conjecture est vraie pour les cas extrêmes: $i = 0$, et $n − 1$.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|