Triangular fully packed loop configurations of excess 2 - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2015

Triangular fully packed loop configurations of excess 2

Résumé

Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. To a TFPL is assigned a triple $(u,v;w)$ of $01$-words encoding its boundary conditions. A necessary condition for the boundary $(u,v;w)$ of a TFPL is $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, where $\lambda(u)$ denotes the Young diagram associated with the $01$-word $u$. Wieland gyration, on the other hand, was invented to show the rotational invariance of the numbers $A_\pi$ of FPLs corresponding to a given link pattern $\pi$. Later, Wieland drift was defined as the natural adaption of Wieland gyration to TFPLs. The main contribution of this article is a linear expression for the number of TFPLs with boundary $(u,v;w)$ where $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$ in terms of numbers of stable TFPLs that is TFPLs invariant under Wieland drift. These stable TFPLs have boundary $(u^{+},v^{+};w)$ for words $u^{+}$ and $v^{+}$ such that $\lambda (u) \subseteq \lambda (u^{+})$ and $\lambda (v) \subseteq \lambda (v^{+})$.
Les configurations de boucles compactes triangulaires (”triangular fully packed loop configurations”, ou TFPLs) sont apparues dans l’étude des configurations de boucles compactes dans un carré (FPLs) correspondant à des motifs de liaison avec un grand nombre d’arcs imbriqués. À chaque TPFL on associe un triplet $(u,v;w)$ de mots sur {0,1}, qui encode ses conditions aux bords. Une condition nécessaire pour le bord $(u,v;w)$ d’un TFPL est $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, où $\lambda(u)$ désigne le diagramme de Young associé au mot $u$. D’un autre côté, la giration de Wieland a été inventée pour montrer l’invariance par rotation des nombres $A_\pi$ de FPLs correspondant à un motif de liaison donné $\pi$. Plus tard, la déviation de Wieland a été définie pour adapter de manière naturelle la giration de Wieland aux TFPLs. La contribution principale de cet article est une expression linéaire pour le nombre de TFPLs de bord $(u,v;w)$, où $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$, en fonction des nombres de TFPLs stables, i.e., les TFPLs invariants par déviation de Wieland. Ces TFPLs stables ont pour bord $(u^{+},v^{+};w)$, avec $u^{+}$ et $v^{+}$ des mots tels que $\lambda (u) \subseteq \lambda (u^{+})$ et $\lambda (v) \subseteq \lambda (v^{+})$.
Fichier principal
Vignette du fichier
Poster57.pdf (343.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01337753 , version 1 (27-06-2016)

Licence

Identifiants

Citer

Sabine Beil. Triangular fully packed loop configurations of excess 2. 27th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2015), Jul 2015, Daejeon, South Korea. pp.985-996, ⟨10.46298/dmtcs.2487⟩. ⟨hal-01337753⟩

Collections

TDS-MACS
31 Consultations
727 Téléchargements

Altmetric

Partager

More