Assessing and tuning brain decoders: cross-validation, caveats, and guidelines - Archive ouverte HAL
Article Dans Une Revue NeuroImage Année : 2016

Assessing and tuning brain decoders: cross-validation, caveats, and guidelines

Résumé

Decoding, ie prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within-and across-subject predictions, on multiple datasets –anatomical and functional MRI and MEG– and simulations. Theory and experiments outline that the popular " leave-one-out " strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be more favorable to use sane defaults, in particular for non-sparse decoders.
Fichier principal
Vignette du fichier
paper.pdf (1.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01332785 , version 1 (16-06-2016)
hal-01332785 , version 2 (31-10-2016)

Licence

Identifiants

Citer

Gaël Varoquaux, Pradeep A Reddy Raamana, Denis A Engemann, Andrés A Hoyos-Idrobo, Yannick A Schwartz, et al.. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage, 2016, ⟨10.1016/j.neuroimage.2016.10.038⟩. ⟨hal-01332785v2⟩
2279 Consultations
1913 Téléchargements

Altmetric

Partager

More