Sorting out typicality with the inverse moment matrix SOS polynomial - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Sorting out typicality with the inverse moment matrix SOS polynomial

Résumé

We study a surprising phenomenon related to the representation of a cloud of data points using polynomials. We start with the previously unnoticed empirical observation that, given a collection (a cloud) of data points, the sublevel sets of a certain distinguished polynomial capture the shape of the cloud very accurately. This distinguished polynomial is a sum-of-squares (SOS) derived in a simple manner from the inverse of the empirical moment matrix. In fact, this SOS polynomial is directly related to orthogonal polynomials and the Christoffel function. This allows to generalize and interpret extremality properties of orthogonal polynomials and to provide a mathematical rationale for the observed phenomenon. Among diverse potential applications, we illustrate the relevance of our results on a network intrusion detection task for which we obtain performances similar to existing dedicated methods reported in the literature.
Fichier principal
Vignette du fichier
SOSdetection.pdf (1.71 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01331591 , version 1 (14-06-2016)

Identifiants

Citer

Jean-Bernard Lasserre, Edouard Pauwels. Sorting out typicality with the inverse moment matrix SOS polynomial. 30th Conference on Neural Information Processing Systems (NIPS 2016), Dec 2016, Barcelone, Spain. pp.1-16, ⟨10.48550/arXiv.1606.03858⟩. ⟨hal-01331591⟩
2286 Consultations
325 Téléchargements

Altmetric

Partager

More