Riemannian cubics on the group of diffeomorphisms and the fisher-rao metric - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Riemannian cubics on the group of diffeomorphisms and the fisher-rao metric

Résumé

We study a second-order variational problem on the group of diffeomorphisms of the interval [0, 1] endowed with a right-invariant Sobolev metric of order 2, which consists in the minimization of the acceleration. We compute the relaxation of the problem which involves the so-called Fisher-Rao functional a convex functional on the space of measures. This relaxation enables the derivation of several optimality conditions and, in particular, a sufficient condition which guarantees that a given path of the initial problem is also a minimizer of the relaxed one. This sufficient condition is related to the existence of a solution to a Riccati equation involving the path acceleration.
Fichier principal
Vignette du fichier
RiemannianSplinesOnGroupsOfDiffeosVersion2.pdf (511.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01331110 , version 1 (13-06-2016)
hal-01331110 , version 2 (05-09-2016)
hal-01331110 , version 3 (06-09-2016)

Identifiants

Citer

Rabah Tahraoui, François-Xavier Vialard. Riemannian cubics on the group of diffeomorphisms and the fisher-rao metric. 2016. ⟨hal-01331110v1⟩
224 Consultations
94 Téléchargements

Altmetric

Partager

More