Pivotal Role of a Pentacoordinate 3MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study - Archive ouverte HAL
Article Dans Une Revue Inorganic Chemistry Année : 2016

Pivotal Role of a Pentacoordinate 3MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study

Résumé

A mechanistic study of the photocleavage of the methylthioethanol ligand (Hmte) in the series of ruthenium complexes [Ru(tpy)(N-N)(Hmte)] 2+ (tpy = 2,2′:6′,2′′-terpyridine, N-N = bpy (2,2′-bipyridine), biq (2,2′-biquinoline), dcbpy (6,6′-dichloro-2,2′-bipyridine), dmbpy (6,6′-dimethyl-2,2′-bipyridine)) was performed using density functional theory. These studies reveal the decisive role of two quasi-degenerate triplet metal-centered states, denoted 3MC hexa and 3MC penta , on the lowest triplet potential energy surface. It also shows how the population of the specific pentacoordinate 3MC penta state, characterized by a geometry more accessible for the attack of a solvent molecule, is a key step for the efficiency of the photosubstitution reaction. The difference in the photosubstitution quantum yields experimentally observed for this series of complexes (from φ = 0.022 for N-N = bpy up to φ = 0.30 for N-N = dmbpy) is rationalized by the existence of this 3MC penta photoreactive state and by the different topologies of the triplet excited-state potential energy surfaces, rather than by the sole steric properties of these polypyridinyl ligands.
Fichier principal
Vignette du fichier
AAM_2016_IC_4448.pdf (1.18 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01327047 , version 1 (25-02-2020)

Identifiants

Citer

Adrien J. Göttle, Fabienne Alary, Martial Boggio-Pasqua, Isabelle M. Dixon, Jean-Louis Heully, et al.. Pivotal Role of a Pentacoordinate 3MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study. Inorganic Chemistry, 2016, 55 (9), pp.4448-4456. ⟨10.1021/acs.inorgchem.6b00268⟩. ⟨hal-01327047⟩
83 Consultations
137 Téléchargements

Altmetric

Partager

More