On the denominators of the Taylor coefficients of G-functions - Archive ouverte HAL
Article Dans Une Revue Kyushu Journal of Mathematics Année : 2017

On the denominators of the Taylor coefficients of G-functions

Tanguy Rivoal

Résumé

Let $\sum_{n=0}^\infty a_n z^n\in \overline{\mathbb Q}[[z]]$ be a $G$-function, and, for any $n\ge0$, let $\delta_n\ge 1$ denote the least integer such that $\delta_n a_0, \delta_n a_1, ..., \delta_n a_n$ are all algebraic integers. By definition of a $G$-function, there exists some constant $c\ge 1$ such that $\delta_n\le c^{n+1}$ for all $n\ge 0$. In practice, it is observed that $\delta_n$ always divides $D_{bn}^{s} C^{n+1}$ where $D_n=lcm\{1,2, ..., n\}$, $b, C$ are positive integers and $s\ge 0$ is an integer. We prove that this observation holds for any $G$-function provided the following conjecture is assumed: {\em Let $\mathbb{K}$ be a number field, and $L\in \mathbb{K}[z,\frac{d }{d z}]$ be a $G$-operator; then the generic radius of solvability $R_v(L)$ is equal to 1, for all finite places $v$ of $\mathbb{K}$ except a finite number.} The proof makes use of very precise estimates in the theory of $p$-adic differential equations, in particular the Christol-Dwork Theorem. Our result becomes unconditional when $L$ is a geometric differential operator, a special type of $G$-operators for which the conjecture is known to be true. The famous Bombieri-Dwork Conjecture asserts that any $G$-operator is of geometric type, hence it implies the above conjecture.
Fichier principal
Vignette du fichier
dengfndef.pdf (176.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01325350 , version 1 (02-06-2016)

Identifiants

Citer

Stéphane Fischler, Tanguy Rivoal. On the denominators of the Taylor coefficients of G-functions. Kyushu Journal of Mathematics, 2017, 71, 2, pp.287-298. ⟨10.2206/kyushujm.71.287⟩. ⟨hal-01325350⟩
158 Consultations
131 Téléchargements

Altmetric

Partager

More