Branching random walk with selection at critical rate - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2017

Branching random walk with selection at critical rate

Résumé

We consider a branching-selection particle system on the real line. In this model the total size of the population at time n is limited by exp an 1/3. At each step n, every individual dies while reproducing independently, making children around their current position according to i.i.d. point processes. Only the exp a(n + 1) 1/3 rightmost children survive to form the (n + 1)th generation. This process can be seen as a generalisation of the branching random walk with selection of the N rightmost individuals, introduced by Brunet and Derrida in [9]. We obtain the asymptotic behaviour of position of the extremal particles alive at time n by coupling this process with a branching random walk with a killing boundary.
Fichier principal
Vignette du fichier
brw_light_selection.pdf (365.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01322449 , version 1 (27-05-2016)

Identifiants

Citer

Bastien Mallein. Branching random walk with selection at critical rate. Bernoulli, 2017, 23 (3), pp.1784-1821. ⟨hal-01322449⟩
170 Consultations
83 Téléchargements

Altmetric

Partager

More