Percolation of random nodal lines - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2016

Percolation of random nodal lines

Vincent Beffara
Damien Gayet

Résumé

We prove a Russo-Seymour-Welsch percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let $U$ be a smooth connected bounded open set in $\mathbb R^2$ and $\gamma, \gamma'$ two disjoint arcs of positive length in the boundary of $U$. We prove that there exists a positive constant $c$, such that for any positive scale $s$, with probability at least $c$ there exists a connected component of $\{x\in \bar U, \, f(sx) > 0\} $ intersecting both $\gamma$ and $\gamma'$, where $f$ is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For $s$ large enough, the same conclusion holds for the zero set $\{x\in \bar U, \, f(sx) = 0\} $. As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.
Fichier principal
Vignette du fichier
Analytic-Percolation.pdf (859.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01321096 , version 1 (24-05-2016)
hal-01321096 , version 2 (13-07-2016)
hal-01321096 , version 3 (25-09-2017)

Identifiants

Citer

Vincent Beffara, Damien Gayet. Percolation of random nodal lines. 2016. ⟨hal-01321096v1⟩
307 Consultations
288 Téléchargements

Altmetric

Partager

More