Regularity of Minimizers of Shape Optimization Problems involving Perimeter
Résumé
We prove existence and regularity of optimal shapes for the problem
$$\min\Big\{P(\Omega)+\mathcal{G}(\Omega):\ \Omega\subset D,\ |\Omega|=m\Big\},$$
where $P$ denotes the perimeter, $|\cdot|$ is the volume, and the functional $\mathcal{G}$ is either one of the following:
- the Dirichlet energy $E_f$, with respect to a (possibly sign-changing) function $f\in L^p$;
- a spectral functional of the form $F(\lambda_{1},\dots,\lambda_{k})$, where $\lambda_k$ is the $k$th eigenvalue of the Dirichlet Laplacian and $F:\mathbb{R}^k\to\mathbb{R}$ is Lipschitz continuous and increasing in each variable.
Domaines
Optimisation et contrôle [math.OC]Origine | Fichiers produits par l'(les) auteur(s) |
---|