Visibility Estimation and Joint Inpainting of Lidar Depth Maps
Résumé
This paper presents a novel variational image inpainting method to solve the problem of generating, from 3-D lidar measures, a dense depth map coherent with a given color image, tackling visibility issues. When projecting the lidar point cloud onto the image plane, we generally obtain a sparse depth map, due to undersampling. Moreover , lidar and image sensor positions generally differ during acquisition , such that depth values referring to objects that are hidden from the image view point might appear with a naive projection. The proposed algorithm estimates the complete depth map, while simultaneously detecting and excluding those hidden points. It consists in a primal-dual optimization method, where a coupled total variation regularization term is included to match the depth and image gradients and a visibility indicator handles the selection of visible points. Tests with real data prove the effectiveness of the proposed strategy.
Domaines
Traitement des images [eess.IV]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...