Horosphere topology - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Horosphere topology

Résumé

We introduce a prime end-type theory on complete Kobayashi hyperbolic manifolds using horosphere sequences. This allows to introduce a new notion of boundary—new even in the unit disc in the complex space—the horosphere boundary, and a topology on the manifold together with its horosphere boundary, the horosphere topology. We prove that a bounded strongly pseudoconvex domain endowed with the horosphere topology is homeomorphic to its Euclidean closure, while for the polydisc such a horosphere topology is not even Hausdorff and is different from the Gromov topology. We use this theory to study boundary behavior of univalent maps from bounded strongly pseudoconvex domains. Among other things, we prove that every univalent map of the unit ball whose image is bounded and convex, extends as a homeomorphism up to the closure. Such a result, relying in an essential way on our theory and on the Gromov hyperbolicity theory, is completely new, dealing with non smooth domains.
Fichier principal
Vignette du fichier
horosphere-final.pdf (356.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01315332 , version 1 (13-05-2016)
hal-01315332 , version 2 (24-06-2016)
hal-01315332 , version 3 (18-09-2016)
hal-01315332 , version 4 (17-01-2017)
hal-01315332 , version 5 (04-10-2017)
hal-01315332 , version 6 (05-04-2018)

Identifiants

Citer

Filippo Bracci, Hervé Gaussier. Horosphere topology. 2016. ⟨hal-01315332v6⟩
341 Consultations
319 Téléchargements

Altmetric

Partager

More