Activity-based Credit Assignment (ACA) Heuristic for Simulation-based Stochastic Search in a Hierarchical Model-base of Systems - Archive ouverte HAL
Article Dans Une Revue IEEE Systems Journal Année : 2017

Activity-based Credit Assignment (ACA) Heuristic for Simulation-based Stochastic Search in a Hierarchical Model-base of Systems

Résumé

Synthesis of systems constitutes a vast class of problems. Although machine learning techniques operate at the functional level, little attention has been paid to system synthesis using a hierarchical model-base. This paper develops an original approach for automatically rating component systems and composing them according to the experimental frames in which they are placed. Components are assigned credit by correlating measures of their participation (activity) in simulation runs with run outcomes. These ratings are employed to bias component selection in subsequent compositions.
Fichier principal
Vignette du fichier
aca1.pdf (556.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01315156 , version 1 (12-05-2016)

Identifiants

Citer

Alexandre Muzy, Bernard P. Zeigler. Activity-based Credit Assignment (ACA) Heuristic for Simulation-based Stochastic Search in a Hierarchical Model-base of Systems. IEEE Systems Journal, 2017, 11 (4), pp.1916-1927. ⟨10.1109/JSYST.2014.2342534⟩. ⟨hal-01315156⟩
90 Consultations
205 Téléchargements

Altmetric

Partager

More