Unsupervised Concept Annotation Using Latent Dirichlet Allocation and Segmental Methods - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Unsupervised Concept Annotation Using Latent Dirichlet Allocation and Segmental Methods

Nathalie Camelin
Boris Detienne
Stéphane Huet
Dominique Quadri
  • Fonction : Auteur
  • PersonId : 964572
Fabrice Lefèvre

Résumé

Training efficient statistical approaches for natural language understanding generally requires data with segmental semantic annotations. Unfortunately, building such resources is costly. In this paper, we propose an approach that produces annotations in an unsu-pervised way. The first step is an implementation of latent Dirichlet allocation that produces a set of topics with probabilities for each topic to be associated with a word in a sentence. This knowledge is then used as a bootstrap to infer a segmentation of a word sentence into topics using either integer linear optimisation or stochastic word alignment models (IBM models) to produce the final semantic annotation. The relation between automatically-derived topics and task-dependent concepts is evaluated on a spoken dialogue task with an available reference annotation.
Fichier principal
Vignette du fichier
UNSUP11b.pdf (313.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01314555 , version 1 (27-02-2019)

Identifiants

  • HAL Id : hal-01314555 , version 1

Citer

Nathalie Camelin, Boris Detienne, Stéphane Huet, Dominique Quadri, Fabrice Lefèvre. Unsupervised Concept Annotation Using Latent Dirichlet Allocation and Segmental Methods. EMNLP Workshop on Unsupervised Learning in NLP (UNSUP), Jul 2011, Edinburgh, United Kingdom. pp.72-81. ⟨hal-01314555⟩

Collections

UNIV-AVIGNON LIA
211 Consultations
43 Téléchargements

Partager

More