Concept Discovery for Language Understanding in an Information-Query Dialogue System - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Concept Discovery for Language Understanding in an Information-Query Dialogue System

Nathalie Camelin
Boris Detienne
Stéphane Huet
Dominique Quadri
  • Fonction : Auteur
  • PersonId : 964572
Fabrice Lefèvre

Résumé

Most recent efficient statistical approaches for natural language understanding require a segmental annotation of training data. Such an annotation implies both to determine the concepts in a sentence and to link them to their corresponding word segments. In this paper we propose a two-steps alternative to the fully manual annotation of data: an initial unsupervised concept discovery, based on latent Dirichlet allocation, is followed by an automatic segmentation using integer linear optimisation. The relation between discovered topics and task-dependent concepts is evaluated on a spoken dialogue task for which a reference annotation is available. Topics and concepts are shown close enough to achieve a potential reduction of one half of the manual annotation cost.
Fichier principal
Vignette du fichier
KDIR11.pdf (138.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01314539 , version 1 (27-02-2019)

Identifiants

  • HAL Id : hal-01314539 , version 1

Citer

Nathalie Camelin, Boris Detienne, Stéphane Huet, Dominique Quadri, Fabrice Lefèvre. Concept Discovery for Language Understanding in an Information-Query Dialogue System. International Conference on Knowledge Discovery and Information Retrieval (KDIR), Oct 2011, Paris, France. ⟨hal-01314539⟩
205 Consultations
105 Téléchargements

Partager

More