On the Periods of Spatially Periodic Preimages in Linear Bipermutive Cellular Automata - Archive ouverte HAL
Communication Dans Un Congrès Année : 2015

On the Periods of Spatially Periodic Preimages in Linear Bipermutive Cellular Automata

Résumé

In this paper, we investigate the periods of preimages of spatially periodic configurations in linear bipermutive cellular automata (LBCA). We first show that when the CA is only bipermutive and y is a spatially periodic configuration of period p, the periods of all preimages of y are multiples of p. We then present a connection between preimages of spatially periodic configurations of LBCA and concatenated linear recurring sequences, finding a characteristic polynomial for the latter which depends on the local rule and on the configurations. We finally devise a procedure to compute the period of a single preimage of a spatially periodic configuration y of a given LBCA, and characterise the periods of all preimages of y when the corresponding characteristic polynomial is the product of two distinct irreducible polynomials.
Fichier principal
Vignette du fichier
338243_1_En_14_Chapter.pdf (132.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01313895 , version 1 (23-01-2017)

Licence

Identifiants

Citer

Luca Mariot, Alberto Leporati. On the Periods of Spatially Periodic Preimages in Linear Bipermutive Cellular Automata. 21st Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2015, Turku, Finland. pp.181-195, ⟨10.1007/978-3-662-47221-7_14⟩. ⟨hal-01313895⟩
207 Consultations
135 Téléchargements

Altmetric

Partager

More