Learning Bayesian networks for semantic frame composition in a spoken dialog system - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Learning Bayesian networks for semantic frame composition in a spoken dialog system

Marie-Jean Meurs
  • Fonction : Auteur
  • PersonId : 765020
  • IdRef : 155762494
Fabrice Lef
  • Fonction : Auteur

Résumé

A stochastic approach based on Dynamic Bayesian Networks (DBNs) is introduced for spoken language understanding. DBN-based models allow to infer and then to compose semantic frame-based tree structures from speech transcriptions. Experimental results on the French MEDIA dialog corpus show the appropriateness of the technique which both lead to good tree identification results and can provide the dialog system with n-best lists of scored hypotheses.

Dates et versions

hal-01311416 , version 1 (04-05-2016)

Identifiants

Citer

Marie-Jean Meurs, Fabrice Lef, Renato de Mori. Learning Bayesian networks for semantic frame composition in a spoken dialog system. Proceedings of NAACL HLT 2009: Short Papers, 2009, Boulder, United States. ⟨10.3115/1620853.1620872⟩. ⟨hal-01311416⟩

Collections

UNIV-AVIGNON LIA
25 Consultations
0 Téléchargements

Altmetric

Partager

More