Sums of $(p^r+1)$-th powers in the polynomial ring $\Bbb F_{p^m}[T]$ - Archive ouverte HAL
Article Dans Une Revue Journal of the Korean Mathematical Society Année : 2012

Sums of $(p^r+1)$-th powers in the polynomial ring $\Bbb F_{p^m}[T]$

Résumé

Let p be an odd prime number and let F be a finite field with p(m) elements. We study representations and strict representations of polynomials M epsilon F[T] by sums of (p(r) + 1)-th powers. A representation M = M-1(k) + ... + M-s(k) of M epsilon F[T] as a sum of k-th powers of polynomials is strict if k deg M-i < k + deg M.

Dates et versions

hal-01311343 , version 1 (04-05-2016)

Identifiants

Citer

Mireille Car. Sums of $(p^r+1)$-th powers in the polynomial ring $\Bbb F_{p^m}[T]$. Journal of the Korean Mathematical Society, 2012, 49 (6), pp.1139-1161. ⟨10.4134/JKMS.2012.49.6.1139⟩. ⟨hal-01311343⟩
60 Consultations
0 Téléchargements

Altmetric

Partager

More