An asymptotic theory for waves guided by diffraction gratings or along microstructured surfaces - Archive ouverte HAL
Article Dans Une Revue Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Année : 2013

An asymptotic theory for waves guided by diffraction gratings or along microstructured surfaces

Résumé

An effective surface equation, that encapsulates the detail of a microstructure, is developed to model microstructured surfaces. The equations deduced accurately reproduce a key feature of surface wave phenomena, created by periodic geometry, that are commonly called Rayleigh-Bloch waves, but which also go under other names, for example, spoof surface plasmon polaritons in photonics. Several illustrative examples are considered and it is shown that the theory extends to similar waves that propagate along gratings. Line source excitation is considered, and an implicit long-scale wavelength is identified and compared with full numerical simulations. We also investigate non-periodic situations where a long-scale geometrical variation in the structure is introduced and show that localized defect states emerge which the asymptotic theory explains.

Dates et versions

hal-01310972 , version 1 (03-05-2016)

Identifiants

Citer

Antonakakis Trifon, Richard V. Craster, Sébastien Guenneau, E. A. Skelton. An asymptotic theory for waves guided by diffraction gratings or along microstructured surfaces. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 470 (2161), pp.20130467. ⟨10.1098/rspa.2013.0467⟩. ⟨hal-01310972⟩
45 Consultations
0 Téléchargements

Altmetric

Partager

More