A comparison of non-parametric segmentation methods
Résumé
In image segmentation, level-set methods discriminating regions with Parzen estimates of their intensity distributions have proven useful in a broad variety of contexts. A number of area cost terms have been proposed to achieve this goal, such as log-likelihood, Bhattacharyya coefficient, Kullback-Leibler divergence and several others. In this work we compare the performance of the most widespread criterions and show that log-likelihood and assimilated methods have a clear advantage in terms of robustness. In particular, the other methods tested suffer from a boundary instability due to small region/small initialization/hard to distinguish regions. We also give some theoretical arguments supporting our experimental results on synthetic and real images.
Pour la segmentation d'images, différentes méthodes ont été proposées pour segmenter une image à partir d'estimateurs de Parzen des distributions d'intensités, par exemple la distance de Bhattacharyya, de Kullback-Leibler, ou la log-vraissemblance. Nous comparons plusieurs méthodes couramment utilisées et montrons que les méthodes basées sur la log-vraissemblance sont les plus robustes, et en particulier sont exemptes de problèmes de bords rencontrés dans toutes les autres méthodes testées. Ces résultats donnent des indications claires sur quelles méthodes doivent être préférées et nous avançons quelques arguments théoriques dans cette direction.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...