A New PAC-Bayesian Perspective on Domain Adaptation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

A New PAC-Bayesian Perspective on Domain Adaptation

Résumé

We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where the distributions’ divergence—expressed as a ratio—controls the trade-off between a source error measure and the target voters’ disagreement. Our bound suggests that one has to focus on regions where the source data is informative. From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithm and perform experiments on real data.
Fichier principal
Vignette du fichier
dalc_icml2016.pdf (1.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01307045 , version 1 (31-05-2016)

Identifiants

  • HAL Id : hal-01307045 , version 1

Citer

Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant. A New PAC-Bayesian Perspective on Domain Adaptation. 33rd International Conference on Machine Learning (ICML 2016), Jun 2016, New York, NY, United States. ⟨hal-01307045⟩
223 Consultations
112 Téléchargements

Partager

More