Linear-quadratic optimal sampled-data control problems: convergence result and Riccati theory - Archive ouverte HAL
Article Dans Une Revue Automatica Année : 2017

Linear-quadratic optimal sampled-data control problems: convergence result and Riccati theory

Loïc Bourdin
Emmanuel Trélat

Résumé

We consider a general linear control system and a general quadratic cost, where the state evolves continuously in time and the control is sampled, i.e., is piecewise constant over a subdivision of the time interval. This is the framework of a linear-quadratic optimal sampled-data control problem. As a first result, we prove that, as the sampling periods tend to zero, the optimal sampled-data controls converge pointwise to the optimal permanent control. Then, we extend the classical Riccati theory to the sampled-data control framework, by developing two different approaches: the first one uses a recently established version of the Pontryagin maximum principle for optimal sampled-data control problems, and the second one uses an adequate version of the dynamic programming principle. In turn, we obtain a closed-loop expression for optimal sampled-data controls of linear-quadratic problems.
Fichier principal
Vignette du fichier
Bourdin-Trelat-2016.pdf (349.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01304197 , version 1 (19-04-2016)

Identifiants

Citer

Loïc Bourdin, Emmanuel Trélat. Linear-quadratic optimal sampled-data control problems: convergence result and Riccati theory. Automatica, 2017, 79, pp.273--281. ⟨hal-01304197⟩
6804 Consultations
254 Téléchargements

Altmetric

Partager

More