Uniqueness result for an inverse conductivity recovery problem with application to EEG - Archive ouverte HAL
Article Dans Une Revue Rendiconti dell'Istituto di Matematica dell'Universita di Trieste: an International Journal of Mathematics Année : 2016

Uniqueness result for an inverse conductivity recovery problem with application to EEG

Résumé

Considering a geometry made of three concentric spherical nested layers, each with constant homogeneous conductivity, we establish a uniqueness result in inverse conductivity estimation, from partial boundary data in presence of a known source term. We make use of spherical harmonics and linear algebra computations, that also provide us with stability results and a robust reconstruction algorithm. As an application to electroencephalography (EEG), in a spherical 3-layer head model (brain, skull, scalp), we numerically estimate the skull conductivity from available data (electrical potential at electrodes locations on the scalp, vanishing current flux) and given pointwise dipolar sources in the brain.
Fichier principal
Vignette du fichier
articleGA.pdf (518.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01303640 , version 1 (18-04-2016)
hal-01303640 , version 2 (30-11-2016)

Identifiants

  • HAL Id : hal-01303640 , version 2

Citer

Maureen Clerc, Juliette Leblond, Jean-Paul Marmorat, Christos Papageorgakis. Uniqueness result for an inverse conductivity recovery problem with application to EEG. Rendiconti dell'Istituto di Matematica dell'Universita di Trieste: an International Journal of Mathematics, 2016, 48. ⟨hal-01303640v2⟩
547 Consultations
308 Téléchargements

Partager

More