HMM-based gait modeling and recognition under different walking scenarios
Résumé
This paper addresses gait recognition, the problem of identifying people by the way of their walk. The proposed system consists of a model-free approach which extracts features directly from the human silhouette. The dynamics of the gait are modeled using Hidden Markov Models. Experiments have been carried out on the CASIA dataset C consisting of 153 people under four walking scenarios: normal walking, slow walking, fast walking and walking while carrying a bag. The results obtained are promising and compare favorably with existing approaches