Automorphisms of rational surfaces with positive entropy - Archive ouverte HAL
Article Dans Une Revue Indiana University Mathematics Journal Année : 2011

Automorphisms of rational surfaces with positive entropy

Résumé

A complex compact surface which carries an automorphism of positive topological entropy has been proved by Cantat to be either a torus, a K3 surface, an Enriques surface or a rational surface. Automorphisms of rational surfaces are quite mysterious and have been recently the object of intensive studies. In this paper, we construct several new examples of automorphisms of rational surfaces with positive topological entropy. We also explain how to define and to count parameters in families of birational maps of the complex projective plane and in families of rational surfaces.
Fichier principal
Vignette du fichier
entropiepos.pdf (345.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01301377 , version 1 (18-11-2019)

Identifiants

Citer

Julie Deserti, Julien Grivaux. Automorphisms of rational surfaces with positive entropy. Indiana University Mathematics Journal, 2011, 60 (5), pp.1589--1622. ⟨10.1512/iumj.2011.60.4427⟩. ⟨hal-01301377⟩
138 Consultations
65 Téléchargements

Altmetric

Partager

More