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AUTOMORPHISMS OF RATIONAL SURFACES WITH POSITIVE ENTROPY

by

Julie Déserti & Julien Grivaux

Abstract. — A complex compact surface which carries an automorphism of positive topological entropy has been proved by Cantat
to be either a torus, a K3 surface, an Enriques surface or a rational surface. Automorphisms of rational surfaces are quite mysterious
and have been recently the object of intensive studies. In this paper, we construct several new examples of automorphisms of
rational surfaces with positive topological entropy. We also explain how to count parameters in families of rational surfaces.
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Introduction

If X is a topological space and f is a homeomorphism of X, the topological entropy of f, denoted by hip(f), is a
nonnegative number measuring the complexity of the dynamical system (X, f). If X is a compact Kéhler manifold
and f is a biholomorphism, then hip(f) = sup;<p<gimx p(f), where 8,(f) is the p-th dynamical degree of f, i.e. the
spectral radius of f* acting on H?* (X) (see [Gro03, Gro87, Yom87]). When X is a complex compact surface (Kihler or
not) carrying a biholomorphism of positive topological entropy, Cantat has proved in [Can99] that X is either a complex
torus, a K3 surface, an Enriques surface or a nonminimal rational surface. Although automorphisms of complex tori are
easy to describe, it is rather difficult to construct automorphisms on K3 surfaces or rational surfaces (constructions and
dynamical properties of automorphisms of K3 surfaces can be found in [Can99] and [McMO02]). The aim of this paper
is to develop a general method to construct explicit examples of automorphisms of rational surfaces.

The first examples of rational surfaces endowed with biholomorphisms of positive entropy are due to Kummer and
Coble ([Cob61]). The Coble surfaces are obtained by blowing up the ten nodes of a nodal sextic in P?(C), the Kummer
surfaces are desingularizations of quotients of complex 2-tori by involutions with fixed points. Obstructions to the exis-
tence of such biholomorphisms on rational surfaces are also known: if X is a rational surface and f is a biholomorphism
of X such that hp(f) > 0, then the representation of the automorphisms group of X in GL(Pic(X)) given by g — g*
has infinite image. This implies by a result of Harbourne ([Har87]) that its kernel is finite, so that X has no nonzero
holomorphic vector field. A second consequence which follows from ([Nag60], Theorem 5) is that X is basic, i.e. can
be obtained by successive blowups from the projective plane P?(C); furthermore, the number of blowups must be at
least ten.

The first infinite families of examples have been constructed independently in [McMO07] and [BK09a] by different
methods. The rational surfaces are obtained by blowing up distinct points of P?(C). The corresponding automorphisms
come from birational quadratic maps of P?(C) which are of the form Ac, where A is in PGL(3;C) and & is the Cremona
involution. These constructions yield a countable family of examples.

More recently, Bedford and Kim constructed arbitrary big holomorphic families of rational surfaces endowed with
biholomorphisms of positive entropy. These families are explicitly given as follows:

Theorem 1 ([BK]). — Consider two integers n > 3 and k > 2 such that n is odd and (n,k) # (3,2). There exists a
nonempty subset C, of R such that, if c € C and a = (ay,a4,. .. ,a[%]) € C[§], the map

n—3
Jar (x:y:z)— (xz”fl X =y e+ Z agxé“z”féfl) (0.1)
/e:fen
can be lifted to an automorphism of a rational surface X,, with positive topological entropy. The surfaces X, are obtained
by blowing up k infinitely near points of length 2n — 1 on the invariant line {x = 0} and form a holomorphic family over
the parameter space given by the a;’s. Ifk =2 and n > 4 is even, then, for a and ' near 0, X, and X,/ are biholomorphic
ifand only ifa =d'.

These examples are generalizations of the birational cubic map introduced by [HV00b, HV00a] and studied by [Tak01a,
Tak01b, TakO1c].

Our paper is devoted to the construction of examples of rational surfaces with biholomorphisms of positive entropy
in a more systematic way than what has been done before. Our strategy is the following: start with f a birational
map of P?(C). By the standard factorization theorem for birational maps on surfaces as a composition of blow up
and blow down, there exist two sets of (possibly infinitely near) points Py and P, in P2(C) such that f can be lifted
to an automorphism between P2(C) blown up in P; and P2(C) blown up in P>. The data of P, and P; allow to get
automorphisms of rational surfaces in the left PGL(3;C)-orbit of f : assume that k € N is fixed and let @ be an element
of PGL(3;C) such that P, ¢Ps, (9f)Ps, ..., (9f)* 1 @P; have pairwise disjoint supports in P2(C) and that (@ f)f@P;, =
Py. Then @f can be lifted to an automorphism of P2(C) blown up at P, @P», (9f)@P;, ..., (¢f)*'@P;. Furthermore,
if the conditions above are satisfied for a holomorphic family of @, we get a holomorphic family of rational surfaces
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(whose dimension is at most eight). Therefore, we see that the problem of lifting an element in the PGL(3;C)-orbit
of f toan automorph1sm is strongly related to the equation u(Pz) Py , where u is a germ of biholomorphism of P?(C)
mapping the support of P, to the support of Py. In concrete examples, when Py and P, are known, this equation can
actually be solved and involves polynomial equations in the Taylor expansions of u at the various points of the support
of P,. It is worth pointing out that in the genenc case, P, and P, consist of the same number d of distinct points
in the projective plane, and the equation u(Pz) =P gives 2d independent conditions on u (which is the maximum
possible number if Py and P, have length d). Conversely, infinitely near points can considerably decrease the number
of conditions on u as shown in our examples. This explains why holomorphic families of automorphisms of rational
surfaces occur when multiple blowups are made.

Let us describe the examples we obtain. We do not deal with the case of the Cremona involution ¢ because birational
maps of the type Ac, with A in PGL(3; C), are linear fractional recurrences studied in [BK06, BK09a], and our approach
does not give anything new in this case. Our first examples proceed from a family (®,),>> of birational maps of P?(C)
given by @, (x:y:z) = (xz" ' 4+y" : yz"~1 : 7"). These birational maps are very special because their exceptional locus
is a single line, the line {z = 0}; and their indeterminacy locus is a single point on this line, the point P = (1:0: 0). We
compute explicitly Py and P, and obtain  sequences of blowups already done in [BK]. Then we exhibit various families
of solutions of the equation (Q®, )*~ (pPz Py fork=2,3 and ¢ in PGL(3;C); this yields automorphisms of rational
surfaces with positive topological entropy. Many of our examples are similar or even sometimes linearly conjugate to
those constructed in [BK]: they have an invariant line and the sequences of blowups are of the same type. However, for
(n,k) = (3,2) we have found an example of a different type satisfying that P, 9P and ¢P3@P are not on the same line:

Theorem 2. — If a is a complex number in C\ {0, 1}, let @, be the element of PGL(3;C) given by

a 2(1—-a) 24+o0—o?
Oq=| —1 0 oa+1
1 -2 11—

The map @y ®3 has no invariant line and is conjugate to an automorphism of P?(C) blown up in 15 points; its first
3+\f

dynamical degree is

Before going further, let us introduce the following terminology: let U be an open set of C", (Qy) ey be a holomorphic
family of matrices in PGL(3;C) parameterized by U and f be a birational map of the projective plane. We say that the
family (Qqf)acu is locally holomorphically trivial if for every parameter ¢ty in U there exists a family of matrices M,
of PGL(3;C) parameterized by a neighborhood of 0t such that My, = Id and for all & near oy, Qo f = M, ! (P f)Mo.
The family of birational maps of Theorem 2, as well as our other examples, are all locally holomorphically trivial. After
many attempts to produce nontrivial holomorphic families, we have been led to conjecture that all families ¢y®,, which
yield automorphisms of positive topological entropy are locally holomorphically trivial. Nevertheless this phenomenon
is not a generality. Theorem 1 gives, for n > 5, examples of families of birational maps of the type @q f conjugate to
families of automorphisms of positive entropy on rational surfaces which are not locally holomorphically trivial (see
section 3.4).

We finally carry out our method for another birational cubic map, namely f(x:y:z) = (yzz cx(xz+y?) y(xz+ y2)>.

This map blows down a conic and a line intersecting transversally the conic along the two indeterminacy points. We
obtain the following result:

Theorem 3. — Let o be a nonzero comp]ex number and

202,
343(371\f+3) o —E(su/ﬂu)

P 154 11iv3) 1 —%(Si\/§+11)

49(
—7(2i\ﬁ+3) 0 0
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The map @qf is conjugate to an automorphism of P?(C) blown up in 15 points, its first dynamical degree is #

Besides, the family Qg f is locally holomorphically trivial.

This example seems completely new, the configuration of exceptional curves shows that it is not linearly conjugate to
any of the already known examples (although we do not know if it is the case when linear conjugacy is replaced by
birational conjugacy).

In the last part of the paper, we propose an approach in order to define and count the generic numbers of parameters in
a given family of rational surfaces. The good setting for this study is the theory of deformations of complex compact
manifolds of Kodaira and Spencer. A deformation is a triplet (X,7,B) such that X and B are complex manifolds and
T: X — Bis a proper holomorphic submersion. If X is a complex compact manifold, a deformation of X is a deformation
(X,m,B) such that for a specific b in B, X}, is biholomorphic to X.

If (X,n,B) is a deformation and X is a fiber of X, Ehresmann’s fibration theorem implies that X is diffeomorphic
to X X B over B. Therefore, a deformation can also be seen as a family of integrable complex structures (J5)pep
on a fixed differentiable manifold X, varying holomorphically with b. The main tool of the theory is the Kodaira-
Spencer map: if (X,7,B) is a deformation and b, is a point of B, the Kodaira-Spencer map of X at b, is a linear map
KSp, (%X): Ty, B — H' (%hO,T%bO ), which is intuitively the differential of the map b — Jj, at b,. If (X, 7, B) is a defor-
mation of projective varieties, we prove that the kernels of KS;(X) have generically the same dimension and define a
holomorphic subbundle Ex of TB. This leads to a natural definition of the generic number m(X) of parameters of a
deformation X as m(X) = dimB —rank Ex. In the case m(X) = dim B, we say that X is generically effective; this means
that for b generic in B, KS;(X) is injective. This is slightly weaker than requiring that different fibers of X are not
biholomorphic (as in [BK]), but much easier to verify in concrete examples.

From a theoretical point of view, deformations of basic rational surfaces are easy to understand. The moduli space
of ordered (possibly infinitely near) points in the projective plane P? of length N is a smooth projective variety Sy of
dimension 2N obtained by blowing up successive incidence loci. There exists a natural deformation Xy over Sy whose
fibers are rational surfaces: if P is in S N, then (Xy)p is equal to BlﬁlP’z. This deformation is complete at any point of Sy,
i.e. every deformation of a fiber of Xy is locally induced by Xy up to holomorphic base change. Therefore, if (X,7,B)
is a deformation of a basic rational surface, all the fibers in a small neighborhood of the central fiber remain rational
and basic (this is no longer the case for nonbasic rational surfaces).

There is a natural PGL(3;C)-action on Sy which can be lifted on X. This action can be used to describe the Kodaira-
Spencer map of Xy : if P is in Sy, KS 5 (Xn) is surjective and its kernel is the tangent space at P of the PGL(3;C)-orbit
of Pin Sy. If N > 4, let SITV be the Zariski-dense open set of points P in Sy such that Bl IP? has no nonzero holomorphic
vector field. Since Xy is complete, families of rational surfaces with no nonzero holomorphic vector fields can locally
be described as the pullback of Xy by a holomorphic map from the parameter space to S}L\,. We provide a practical way
to count the generic number of parameters in such families:

Theorem 4. — Let U be an open set in C*, N be an integer greater than or equal to4 andy: U — S,T\, be a holomorphic
map. Then m(y*Xy) is the smallest integer d such that for all generic o in U, there exist a neighborhood Q of 0 in
C"~“ and two holomorphic maps y: Q — U and M : Q — PGL(3;C) such that:

— v:(0) is injective,

- v(0) =0 and M(0) = Id,

— forallt in Q, y (y(7)) = M(1) y(a).

Acknowledgements. — We would like to thank E. Bedford, D. Cerveau and C. Favre for fruitful discussions. We also
thank M. Manetti for the reference [Hor76].
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1. Algebraic and dynamical properties of birational maps

A rational map from P?(C) into itself is a map of the following type

f:P(C) - P(0), (:y:2) = (folen2)  filen2): Low0,2)

where the f;’s are homogeneous polynomials of the same degree without common factor. The degree of f is equal to
the degree of the f;’s. A birational map is a rational map whose inverse is also rational. The birational maps of P?(C)
into itself form a group which is called the Cremona group and denoted Bir(IP?).

If f is a birational map, Ind f denotes the finite set of points blown up by f; this is the set of the common zeroes of
the f/s. We say that Ind f is the indeterminacy locus of f. The set of curves collapsed by f, called exceptional set of f,
is denoted Exc f; it can be obtained by computing the jacobian determinant of f.

The degree is not a birational invariant; if f and g are in Bir(IP?), then usually deg(gfg~') # deg f. Nevertheless there
exist two strictly positive constants o and B such that for all integer n the following holds:

adeg /" < deg(gf"g™") < Bdeg f".
This means that the degree growth is a birational invariant.

Let us recall the notion of first dynamical degree introduced in [Fri95, RS97]: if f is in Bir(P?), the first dynamical
degree of f is defined by

A(f) = lim(deg f")'/".

More generally we can define this notion for bimeromorphic maps of a Kihler surface. A bimeromorphic map f on a
Kihler surface X induces a map f* from H"!(X,R) into itself. The first dynamical degree of f is given by

M) = lim (| (f"))"".

Let f be a map on a complex compact Kihler surface; the notions of first dynamical degree and topological entro-
py hiop(f) are related by the following formula: hyp(f) = logA(f) (see [Gro03, Gro87, Yom87]).

Diller and Favre characterize the birational maps of P?(C) up to birational conjugacy; the case of automorphisms with
quadratic growth is originally due to Gizatullin.

Theorem 1.1 ([DF01, Giz80]). — Let f be a bimeromorphic map of a Kahler surface. Up to bimeromorphic conju-
gacy, one and only one of the following holds.
— The sequence (|(f™)*|)nen is bounded, f is an automorphism on some rational surface and an iterate of f is an
automorphism isotopic to the identity.
— The sequence (|(f")*|)nen grows linearly and f preserves a rational fibration; in this case f is not an automor-
phism.
— The sequence (|(f™)*|)nen grows quadratically and f is an automorphism preserving an elliptic fibration.
— The sequence (|(f")*|)nen grows exponentially.

In the second (resp. third) case, the invariant fibration is unique. In the three first cases A(f) is equal to 1, in the last
case A(f) is strictly larger than 1.

Examples 1.2. —  — If f is an automorphism of P?(C) or a birational map of finite order, then (deg "), is bounded.
— Themap f: (x:y:z) -—» (xy:yz:z?) satisfies that (deg f"), grows linearly.
— A Hénon map, i.e. an automorphism of C? of the form

fi(xy) = (»P(y) —dx), decC", PcCly],degP>2,

can be viewed as a birational map of P>(C) and A(f) = degP > 1.
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Let f be a bimeromorphic map on a Kéhler surface X. To relate A(f) to the spectral radius of f* we need the equali-
ty (f*)" = (f™)* for all n. When it occurs we say that f is analytically stable ([FS95, Sib99]). An other characterization
can be found in ([DFO01], Theorem 1.14): the map f is analytically stable if and only if there is no curve C C X such
that f*(C) C Ind f for some integer k > 0. Up to a change of coordinates, one can always assume that a bimeromorphic
map of a Kihler surface is analytically stable (see [DF01]). For instance, if f is an automorphism, then f is analytically
stable and A(f) is the spectral radius of f*. Besides, since f* is defined over Z, A(f) is also the spectral radius of f;.

Let us recall some properties about blowups of the complex projective plane. Let py, ..., p, be n (possibly infinitely
near) points in P>(C) and Bl,, __,, P? denote the complex manifold obtained by blowing up P?(C) at py, ..., py.
— We may identify Pic(Blm7_._7,,nIP’2) and H2 (Bl,, ,_”7,,,1]P’2, Z) so we won’t make any difference in using them.
- Ifm: Blplﬁ_,_dl,nIE”2 — IP2(C) is the sequel of blowups of the n points p1, ..., p,, H the class of a generic line and
E; =n"!(p;) the exceptional fibers, then {H, Ey, ..., E,} is a basis of Pic(Bl,, . ,,P?).
— Assume that n <9 and that f: Bl,,ly,_,ﬂ,,n]P>2 — Bl pnIP’z is an automorphism. Then the topological entropy of f
vanishes. If n < 8 then there exists an integer k such that f* descends to a linear map of P?(C) (see [Dil]).
In the sequel, P? will denote the complex projective plane.

2. Birational maps whose exceptional locus is a line, I

Let us consider the sequence of birational maps defined by ®, = (xz*~! +y" : yz"~! : ), with n > 3. In this section
we first construct for every integer n > 3 two infinitely near points P; and P, such that &, induces an isomorphism
between Bll,g1 P? and Bl};2 P2, Then we give theoric conditions to produce automorphisms @ of P? such that ¢®, is

conjugate to an automorphism on a surface obtained from P? by successive blowups.

In the affine chart z =1, ®, is a polynomial automorphism which preserves the fibration y = cte, i.e. it is an elementary
automorphism; thus A(®,) = 1. More precisely the sequence (deg®¥);cy is bounded, so @, is conjugate to an auto-
morphism on some rational surface X and an iterate of ®, is conjugate to an automorphism isotopic to the identity. The
map @, blows up one point P = (1:0:0) and blows down one curve A = {z = 0}.

2.1. First step: description of the sequence of blowups. — We start by the description of two points Py and P, infinitely
near P of length 2n — 1 such that &, can be lifted to an automorphism between Bl B PP? and BI ﬁz}P’z.

Convention: if D (resp. D;) is a curve on a surface X, we will denote by D; (resp. D;+1) the strict transform of this
curve in X blown up at a point.

Let us blow up P at left and right; set y = u;, z = ujv; then A; = {v; = 0} and the exceptional divisor E is given by
{u; =0}. We can also set y = rys1, z = s1; in these coordinates E = {s; = 0}. We get

n—1 n n—1
. -1 . -1, ulvl ulvl ulvl .
b, : (ul,vl) — (ul,ulvl)(m) — (V']l +up .Mlvrll .ulv’f) = ( — — | -, ;
(2) (u1,v1)

b) —
vl by vl L vl L

hence E is fixed, A; is blown down to P; = (0, 0)(u1~v1) =ENA; and P; is an indeterminacy point. One also can see that

11 51 51
D,: (r1,51) = (r181,8 —>(1+r”s:rs:s)—> , — | r, )
we 1) ( i 1)(%2) SR 1 risi 1 F?M () : 1 r?sl (r1s1)

Then we blow up P at left and right. Set u; = up, vi = upv; so the exceptional divisor F is given by {u, = 0} and A,
by {v2 = 0}. There is an other system of coordinates (r2,s2) with u; = ras2, vi = s2; in this system, F = {5, = 0}
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and E; = {r, = 0}. On the one hand

n—1. n—1

n.,n
. n2n1 n—l n—1. non Uy vy UV
D, : (uz,VZ) — (Mz,quQ)(Ml’vl) — (u2 +1: U, vy u2v2> = 5 nfl — n71
uy +1’ Uy +1
(n2)
u’z’*lvgfl ug%vg*z
= n—2 n,l+17u2v2 - n—2 n,1+1au2v2 5
2 "2 (ug,v1) 2. V2 (r2,52)
on the other hand
n—1 n
. n—2 .1, s, 258,
Dy: (r2,52) = (1252,82)(uyvy) — | Sy ~+rairasy  insh) — = ,——
1,V1 n 2+ n 2+
S2 r S2 rn (y.z)
rasy” ! rzs'z’f2
a2 T2
r s r
2 ww) 2 2 S (nw)
SoA| = (070)<,27S2> is an indeterminacy point and F is blown down to A;.
Moreover

1 n n—1 2, n—2
_ _ 7" b4 ¥z z yz z
CIJ:(yz)%(z"Ier":yz"1:z”)%< , ) %( > %< ) :
Y Yy (»2) Yl (ug,v1) Yy (r2,52)

hence A is blown down to A;.

The (n— 3) next steps are of the same type, so we will write it one time with some indice k, 1 <k <n—3.
We will blow up Ay = (0,0)(,,,, 4,,) at left and right. Set

Tiyl = Ugy2, Skt+1 = Uk+2Vk+2 & Tkt = Tkt 2Sk+25 Sk+1 = Sk+2-
Let us remark that (2, vi42) (resp. (rx+2,5%12)) is a system of coordinates in which the exceptional divisor G¥ is
given by G¥ = {ut,» = 0} and G’fl = {Viy2 = 0} (resp. GF = {512 = 0}, B 1 = {ris2 = 0}). We have

. n—k—2 n—k—1. n—1 n—1.
Dy (Upy2,Vis2) — ("‘k+2auk+2Vk+2)(rk+1,sk+1) (1 +u s Viio Mk+2Vk+2 uk+2"k+2)
i k—2 N k—2
k+2 k+2

n—k—2 e k7]7uk+2vk+2

T4y i (Tkg25%42)

and

. n—k—2 ., n—1, n
Dyt (2, 5k42) = (Ter2Sk255k42) (s sgrn) = (rk+2 TS T TkA2S 0 rk+25k+2)

—k—2
Tk428k 42 s
n—k—2 1 ok+2

Tkt2 + sk+2 ("t 25k+2)

So0Ak+1 = Gkn Eir1 = (0,0)< is an indeterminacy point and Gk7 G]ffl are blown down to Ay;. Therefore

Tk+255k+2)

—1 n k+2 _n—k—2
_ _ vz z Yoz Z
D, (y,2) = (Z" Pyt y ! :Z”) = ( = ,— ) — (_ )
7 1+yn 7" 1+yn (y,z) 7" 1+yn y (rk+27sk+2)

80 Ay is also blown down to Ay .
One can remark that

n—2.n—2 n—k—2 N k—2
P, Uy M uy Va
n- (u27v2) _> 1 + n—2 ”7] 7M2V2 _> l + n—2 ”7] 7u2v2 )
l/t I/t
(r2.52) (Fkt2,8k+2)

hence Fy is blown down to Ay 1.
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Let us now blow up A,_, at left and right. Set r,—1 = up, Sp—1 = Uyvp, and r,—1 = rpSy, Sp—1 = Sy. Let us remark
that (u,,v,) (resp. (r,,s,)) is a system of coordinates in which the exceptional divisor is given by G"~2 = {u, = 0}
and G 3 = {v, = 0} (resp. G" % = {5, = 0}). We compute

1 o 1
D2 (tny Vi) = (tny UnVi) (1, 150 1) = (1 v u, lvﬁ ! :uﬁvg) — <,unvn>
14-v, (Fssi)

and

'n
D, (rn,s0) — (rnsn’sn)(rnq,an) — (1 4 ”nsﬁ_l : r,,sﬁ) — ( 7sn> .
Lhr "/ (rsa)

This implies that G"~2 is fixed, G is blown down to the point § = (1,0)(s,.5,) of G*~% and the point T = (—1,0),, 5.)
of G"2 is an indeterminacy point.

n—1 n
<I>n:(y7Z)—>(,,yl Z,,,Z> —>(,,1y ,,,Z>
LAYV ) LAYV )

so A, is blown down to S; on the other hand

un72 n—2 MZVZ 1
(I)nI (l/t2 V2) — —2 2 uzva — — U2 V2 — — U2 V2
’ 1_’_un72vn71 ’ l+un72vn71 ’ 1_’_un72vn71 ’ ’
2 "2 (r2,52) 2 2 (Fn—18n—1) 2 "2 (n5n)

hence F,_, is blown down to S.

On the one hand

Now we blow up T at left and S at right

Fp =ty —1 rm=ap+1+1
H={u =0 K={a =0
{ Sn = Un+1Vn+1 { nH } { Sn = Ant1bnt1 { nH }
Tn = Fpt1Snt1 — 1 _ _ Fn = Cpy1dp+1 + 1 . _
{ Sn = Sn+1 H—{Sn+1 _0} { Sp = dnt1 K—{dn+1 _O}
We obtain

Dy (Un1,Vn+1) = (Unt1 — Lt 1Vn41) (1 50) = (1 (Upgr — 1)1421%\’711% ¢ (tng1 — l)uﬁl}vﬁ+1>

n—2 n—1 n—1_n n—2 n—1
= ((“n+1 - 1)“n+lvn+17 (Upt1— 1)“n+1"n+1)()_z) — ((Mn+1 - 1)”n+1"n+1’“n+l"n+l)(u )
, 11

-3 n—-2
— ((un—H - 1)u2+1V:+17un+lvn+l) — .. ((”n-ﬁ-l - l)Vn+17un+1Vn+1)

(72~,S2) (rnflv“‘nfl)

and

D,: (rn-&-lysn—&-l) — (rn+lsn+1 - ]7sn+1)(r,,,s,,) — (rn+1 : (rn+lsn+1 - 1>SZJ:% : (rn+lsn+1 - l)szjri)

2 -1 -2
(rrH—ler—l - 1)SZ+1 (rn+lsn+1 - 1)52+1 (rn+lsn+l - 1)52+1
— , — »Sn+1
(2) (u1,v1)

ntl 'n+l '+l

n—3
(Fnt18n+1 — l)an Pt Snt1 — 1
%( . o Sn1 = (s :
n+1 (”2,52) n+1 (r,,,l,sn,l)

Thus H is sent on G} ° and By = (0,0)

rus1:5ns1) 18 N indeterminacy point. Moreover,

1
D, (up,vn) — (,unvn) — (vn,un(1+vn)> ,
1 +Vn (FnsSn) 1 +Vn (@ns1:0n11)
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yn z yZn72 z
D, (v,2) = (an+,”> — ( Ty
yoy (rnasn) yoy (Cn+l7 n+|)

and
n73vr172

u
b, - 2 2
n- (u27vz) n—2 n 1 a”2V2 n72Vn71 ,M2V2

! +u (rn-,Sn) 1 +u2 2 (Cn+1-,dn+l)
Therefore G§*3 is sent on K and A+, F,_; are blown down to C; = (0, 0)(cn+1,dn+1)'

The (n — 3) following steps are the same, so we will write it one time with some indice ¢, 1 </ <n—3.
We blow up By = (0,0), . ,,.,) atleftand C; = (0,0)(, ., 4,.,) at right

C, =d
{ n+/ n+0+1 MZ _ {an+k+l _ 0}

Tn+t = Un+0+1 L!
= {ntr+1 =0
{ {un } dpit = anr41bn1041

Sn+0 = Un4+-04+1Vn+0+1

Cnit =C d
{ n+t n+l+14n4+0+1 Mf _ {dn+é+1 _ 0}

T'ntl = Fn-l+1Sn+4+1 LY
= {8441 =0
{ {sn } duvt = st 11

Sn+€ = Sn+l+1
On the one hand
Dyt (Upio41,Vares1) = (un+4+l7Mn+€+lvn+K+l)(rn+é7sn+4)
! 4 n—(-2 N =1 ./ 0+ Z n—{—1_n—¢t
- (1 : (“n+e+1"n+£+1 *1) Ut o+1Vnre+1 - ( n+/+1 Vidt4+1— 1) Wytey1V n+£+1)

41 ¢
- ((“n+z+1vn+z+1 - 1)Vn+e+1,un+é+1vn+z+1)
(Fp—1—-0:Sn—1-¢)

and on the other hand

D (Pt 15Snre01) = (Fake 100401, Sne41 )(rH[,s,,M)

. 41 n—~{— L+ n—{—1
— (rn-M—H . (rn+€+1sn+g+1 - l)sn+é+1 (rn+/+lsn+/+1 1) n+é+1)
l+1
Tnl+18, 4041 — 1

»Sn+0+1

Tnt0+1
(rnflféxsnflff)

S0 Br1=1(0,0)(,,,.5..¢,,) 18 @n indeterminacy point, L’ is sent on ng_ﬁz_[ if 1 </ <n—4andL"3 is sent on Fa,_4.

Remark that By is on L’ but not on L?il. Besides one can verify that

y€+lzn—é—2 z i (-3 W -2

D, (0,2) 2 | T and that ®,: (up,v2) — 2 9 UV ;
Yy d 1+un2n1

(Cnvtrt dnrer) 2 (Cntes1:dnte11)

for every ¢ < n— 3. The situation is different

thus A, ¢4 and F, 1y are blown down to Cyy| = (0,0)(6)#“14’#“1)
the divisor Fy,_4 is sent on M" 3.

for £ = n— 3 : whereas Ay,_» is still blown down to C,,_» = (070)(02%2_’,12”72),
One can also note that

U k— 2er k—2 1
(42, Vit2) — kya kil U2V == | ——————,up0v
k425 Vi+2 1+un —2 N —1° k+2Vk+2 [ 1+M” —2 N —1° k+2Vk+2
k2 Vk2 (Tkt2:5%12) k2 Vit (7ns5n)
n—k—3 n—k—2
u 1% v,
k+2 k+2 k+2
1+ U k—2 o k—1 s U2 V2 — ... 1 I ' k—2 o —1 s Uk+2VEi+2
k2 Vk+2 (cnt1:dn+1) k2 Vk+2 (c2n—k—2,d2n—k—2)

SO G§n747k is sent on MZ’k’3 forall 1 <k<n—4.

Finally we blow up B,,_; at right and C,,_, at left.
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p—2 = Up—1 _2 Cop—2 = A2p—1 )
- L2 = {us 1 =0} n2 =l M2 = {az,_| =0}
$2n—2 = U2p—1V2n—1 2n—2 = A2pn—-102n—1
pn—2 = p—1Sm— Con—2 = Copn—1don—
2n—2 2n—192n—1 Ln 2 _ {s2n | = O} 2n—2 2n—142n—1 Mn 2 _ {dn )= O}
$2n—2 = S2n—1 dan—2 = dap—1
This yields

_ I 2 I 2 )
D0 (u2n—1,v20-1) = (U2n—1,U20-1V20-1) (ryy_2,500-2) (1 (U, Va2 = Dvan—1 & (U, V5,2 1)u2n—1vz,l,1>
and
) ) -1 . -1
Dy: (ron—1,520-1) = (F20-1520-15520-1) (r3_2,500_2) (F2n71 D18,y — 1 (ran—185, - — I)Sanl)-

Thus there is no indeterminacy point and L"2 js sent on Ay,_ ;. Furthermore,
-1
yn z
(,2) = <—n1na -
DAY Y (o)

All these computations yield the following result:

0 Ay, is sent on M" 2,

Proposition 2.1. — Let P (resp. 132) denote the point infinitely near P obtained by blowing up P, Py, Ay, ..., Ay, T,
By, ...,B,_3 and B,_, (resp. P, P|, Ay, ..., A2, S,Ci, ..., Cy_3 and C,,_»). The map ®, induces an isomorphism
between Blla1 P? and Blla2 IP2. The different components are swapped as follows:

A—>M"? E—E FosM G"?5K G 25G"2% H-oG"3, L"3PSEF L'?2oA,

GF 5> M3 for1 <k<n—4, Ll G737 for1<t<n—4.
This result is close to ([BK], Proposition 1).
2.2. Second step: gluing conditions. — The gluing conditions reduce to the followmg problem: if u is a germ of
biholomorphism in a neighborhood of P, find the conditions on u in order that u(Pz) Pr.

Consider a neighborhood of (0,0) in C? with the coordinates M1, u;. For every integer d > 1, we introduce an infinitely
near point Q, of length d centered at (0,0) by blowing up successively ®, ..., @y where ®; = (0,0)y, ,,,), the coordina-
tes (M;,u;) being given by the formulae 1; = M 14+1 and w; = iy

Let g(Mi,u1) = Z Ocl-yjn"l,u{, Z Bi’jn’iy{ be a germ of biholomorphism at (0,0) y, ,.,)- If d is a positive
(i,j)eN? (i,))eN? (M1aa1)
integer, we define the subset I; of N2 by I; = {(0,0), (0,1), ..., (0,d — 1)}.
Lemma 2.2. — Ifd is in N*, g can be lifted to a biholomorphism g in a neighborhood of the exceptional components
in Blﬁd C? if and only if oo = Poo =0and ap; = ... = 0o 4—1 = 0. If these conditions are satisfied, Bo,| # 0 and g is
given in the coordinates (M41,M4+1) by the formula
1)+
Y @ md+1#d(+11 i
~ (i.J)€l i ditj
gMas1,kav1) = < T L Bk v las| <& Matipar| <e
Z Bl,jnd+1yd+1 (i,))en
(t.)€h (Md-+1:Ha+1)
Proof. — This is straightforward by induction on d. O

Fix n > 3, then B1131 C? can be obtained as follows:
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— blowup P ;

— blow up ﬁn,l centered at P (i.e. N1 = uy, 1 =v1) ;

— blow up ﬁn_l centered at T (i.e. My = rp+ 1, uy = sy).
The same holds with 132, the point T being replaced by S.

Proposition 2.3. — Letu(y,z) = Z m, jyizj , Z n;, jyizj be a germ of biholomorphism at P.
(i.j)eN? (i.j)eN?
— Ifn =73, then u can be lifted to a germ of biholomorphism between Bll,;z]P’2 and BII;] P2 if and only if
— moo =npp=0;

- np=0;
3 2 .
—mjo+ng; =0;
—3mg 1ng1
- n2~,0 - 2m1.0 :

— Ifn >4, then u can be lifted to a germ of biholomorphism between Bllg2 P? and B1131 IP? if and only if
— moo=npp=0;
—nip=0;
- ml o +ng ' =0;
— mp,1 =n0= 0.

Proof. — The first condition is u(P) = P, i.e. mgo = ngo = 0. The associated lift & is given by

itj—1_j
Z R juy V1

~ _ i+j j (@jEn
uy (uy,vy) = Z mi juy Vi, -1
(e Y miuy v

(i,J)eh

(u1,v1)

We must now verify the gluing conditions of Lemma 2.2 for g = u; with d = n — 1. This implies only the condition
nio =0, since 0 (1) = 0 for j > 0. After blowing up Q,_; we get

n . .
. 4 i+j—1 (=) (i+j=1)+]
Z s 'riJrjs(nfl)(H»]*l)#»] Z ni jry T s
A L)% on (i)
> (r s ) _ (i,))eh (i.j)#(1,0)
n\TnsSn) = n—1" Z e 'ri+j71s(n71)(i+j71)+j
L)'n n
it j—1 (=) (i+j—1)+j—1 i
Z mi,jr;r,/ lsﬁ," V(itj—1)+j (i,/)eh
(i.)eh
(i,/)#(1,0) ("nuyn)
g

The condition #,(S) = T is equivalent to = —1. In the coordinates (1;,u;) centered at S and T,

n—1
0,1

Up(M1,p1) = (O, ), T2 (M 01)) iy )

where

n—1
Z m; j(1 +Tll)i+j.u(1nl)(i+jl)+j>

— + 1L
( Y m,j<1+m)"+f—1u5”““””*“)
(i

)€
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Thus ;
(’"LO +mo, i1+ 0(#7_2))

-2 n2y)" !
no,1 +no oty +o(u %)

The higher gluing conditions of Lemma 2.2 for g = u,, with d = n— 1 are given by %(O, 0)=0,1</{<n-2.
1
If n =3, then

+1.

1—‘l (07/*’1) =

3
(M1,0+MO,1#1 +0(H1)> m? n2.0
C1(0,u1) = > +1= o (37710,1 —2mLon’> u1+o(ur);
no,1 +n2, 001 +0(,ul)) 0.1 0.1
hence the condition is given by ny g = 3'7;2,'111"(?"
or migtmoy . . . C
If n > 4, then aT:(O’O) =n— = Since the coefficient m, ¢ is nonzero, mo,} = 0. This implies
0,1
.0 n-2 -2
L(0,u) = —==uy™ " +o(ty ),
no,1
so the last condition is ny o = 0.
The other computations are quite similar. O
2.3. Remarks on degenerate birational quadratic maps. — We can do this construction for n = 2 and find gluing

conditions: a germ of biholomorphism g of C? around 0 given by

g(,2) = ( Y mipyd, Y, mipy'd )
0<i,j<4 0<i,j<4
sends fA’z on fA’l if and only if mgo = nop =0, n1 o = 0 and m%_O =ny0—HNo,1-
As we have to blow up P? at least ten times to get automorphisms with nonzero entropy, we want to find an auto-
morphism @ of P? such that (¢®,)*@(Py) = P; with k > 4 and (@®,)'@(P) # P for 0 < i < k — 1. The Taylor series

of (¢d,)*¢ is of the form
(X mp'd, ¥ mp'a)+o(llnll)
0<i,j<4 0<i,j<4

in the affine chart x = 1. The degrees of the equations increase exponentially with k so even for k = 4 it is not easy to
explicit a family. However we can verify that if

00 -%
=0 1 0 with o in C such that o + 20 + 40* + 80> +16 =0,
1 0 «

then (¢®;)*@(P;) = P;. These examples are conjugate to those studied in [BK09b].

3. Birational maps whose exceptional locus is a line, IT

In this section, we apply the results of §2 to produce explicit examples of automorphisms of rational surfaces obtained
from birational maps in the PGL(3;C)-orbit of the ®,. As we have to blow up P? at least ten times to have nonzero
entropy, we want to find an automorphism ¢ of P? and a positive integer k such that

(k+1)2n—1)> 10, (¢®,)‘@(P;) =P, and (®,)@(P)#P for 0 <i<k—1. (3.1)
First of all, let us introduce the following definition.
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Definition 3.1. — Let U be an open set of C?, ¢: U — PGL(3;C) be a holomorphic map and f be a birational map
of the projective plane. We say that the family of birational maps (@, ... o, f )(ocl,‘.‘.,ocn)eU is locally holomorphically
trivial if for every 0 in U there exists a holomorphic map M from a neighborhood Uy, of ¢ to PGL(3;C) such that

My, = 1d and for all ot in Uy, Qo.f = My (@0, f)Ma.

3.1. Families of birational maps of degree n with exponential growth conjugate to automorphisms of P> blown up
in 61 — 3 points. — Let @ be an automorphism of P>. We will find solutions of (3.1) for n > 3 and k = 2.
Remark that the Taylor series of (¢®,)?@ is of the form
( Y omipyd, Y mp'd ) +o (I |(3,2)] |2"72>
0<i,j<2n—2 0<i,j<2n—2

in the affine chart x = 1. Assume that (¢®,)?@(P) = P; one can show that this is the case when

2

Y _1+5a+5
Qap=1] 0 —1 0
oa B )

o
One can verify that the conditions of the Proposition 2.3 are satisfied if B = TY and (1+8)* = —1.

Forogk§3nf1,1et6k:exp((2"§%) L If

1 28 148;+52
o o
(p(X,B = 0 —1 0 ’
a P O
then (¢, p®,)20(P2) = Py.
Theorem 3.2. — Assume that n > 3 and that
2B 148+
¢ ¢ 2k+1)i
Oup=1| 0 -1 0 , OLG(C*,BG(C,SI{:expC—;)m)—1,0<k<3n—1.
’ n
a B O
The map Qo 3P, is conjugate to an automorphism of P? blown up in 3(2n — 1) points.
The first dynamical degree of Qg g®, is strictly larger than 1; more precisely M Qg pP,) = nryn—d ”2"2_4.

The family @y g, is locally holomorphically trivial.
Proof. — Let @ denote Qg p. In the basis
{A,E,F,G' ...,G" 2 H,L!,... L"2 ¢E, oF, 9G', ..., 0G" 2, oK, oM' ..., oM" 2,
PDuGE, 9P, 9F, 90,0G', ..., 9,0G" 2, 90, 9K, P, 0M', ..., 0P, oM" %}
the matrix M of (¢®,). is
01 ‘A |0120-1(0124-1
02n-1,1| B | 021 |Id2y 1

A C | O2n—1 | Ogpi
02n71,1 02n71 Idanl 02n71

€ %11—2

with
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ro o0 0 0 17 r1 0 0 0 —17
0 0 0 0 2 0 0 0 1 -2
0 P 0
A= O €My, 1, B=| 1 Sl on €My, C=| 1 T T | e M.
1 n 0 0 —n
0 0 -« -+ 0 0 01 0 - - 0
LO 0 -~ - 0 0 n | L0 0 0 - - 0 —n |

Its characteristic polynomial is (X? —nX + 1)(X?> =X + 1)"2(X + 1)" (X2 +X +1)*(X — 1)"*'. Hence

n++vn?—4
Mow,) = "

which is larger than 1 as n > 3.
Fix a point (0, o) in C* x C. We can find locally around (0, 3p) a matrix M, g depending holomorphically on (o, )

such that for all (a, 3) near (0, o), we have @ P, = M, %3(P0to,l30q)"MmB : if u is a local holomorphic solution of the
equation o = y" oy such that ggp = 1 we can take

B—Bou
1 TN 0
M(X,,B = 0 ’unlfl O
o o &
u

Remark 3.3. — Assume that §; = —2 and n is odd. Consider the automorphism A of P? given by
A= (uy:oax+By—z:2), acC",BeCu"=0.
One can verify that A(Qq p®,)A ™" = (xz" 1 : 2" : X" + 2" — yz"~ ') which is of the form of (0.1).
3.2. Families of birational maps of degree 1 with exponential growth conjugate to automorphisms of P> blown up in

4n — 2 points. — In this section we will assume that #n is larger than 4. In that case, we succeed in providing solutions
of 3.1) for k= 1.

Proposition 2.3 allows us to establish the following statement.

Theorem 3.4. — Assume that n > 4 and
o B B(rer—0?)

d(a—7) 2k+1)i
(p(X;B~Y~,5: 0 Y 0 ’ (x,BG(C,'Y,SE(C*,(X#'Y,Sk:CXp(H—)Ht),ogkgn—l.
L I T "

The map @, g 5P, is conjugate to an automorphism of P2 blown up in 4n — 2 points.

- 1=
The first dynamical degree of Qg .y 5P is strictly larger than 1; more precisely M(Qqp ysPn) = M.

The family Q¢ g 5%Pn is locally holomorphically trivial.
Proof. — Let @ denote Qg gy 5-
In the basis
{A,E,F,G' ...,G" 2 H,L!, ... L"2 ¢E, oF, 9G', ...,0G" 2, oK, oM' ..., oM" 2}

the matrix M of (¢®,), is

01 |'A|0124—1

0211 | B |Idop—1 | € Man—1
A | C| 0y
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where
ro o 0 0 17 rtr o 0 0 —-117
0 0 0 0 0 0o 1 -2
0 . : . 0
A= ; e%”’l’l’ B= n 657\/[2nfl-, C= —n € Moy1.
0
1 n 0 0 —n
0 0 0 0 : o1 o0 - - 0 :
Lo 0 0 0 n| Lo 0 0 -« o 0 —n|

Its characteristic polynomial is (X> — (n— 1)X +1)(X%+1)"2(X + 1)"~'(X — 1)"*!. Hence

(n—1)++/(n—1)2-4

7\,(([)(1)”) = )

which is larger than 1 as n > 4.

Fix a point (0t, Bo,Y0,00) in C x C x C* x C* such that o # Yp. We can find locally around (o, Bo,Yo,0) a ma-
trix Mg y5 depending holomorphically on (o, B,7y,0) such that for all (o, 3,7,8) near (o, Bo,Y0,80), we have

—1 .
Py, 5Pn = Mu,ﬁ,y,S(POLO«,BO«,Yoﬁoq>"M0L«,I3-,YA,5 :

H"BoYo d(y— o)

if u is a local holomorphic solution of the equation B = such that gy = 0, we can take

Y0 (Yo — o)
I A B e .
Mopys=| 0 gtoo|, where A= Pot (¥30 — 1%09) and B= w,
- 0 0 Y80 (Yo — 0 0(0to —70)

Remark 3.5. — Consider the automorphism A of P? given by
A = (uy: 8(00—7)x+ BSy — Pz - &:Pz), o, BeC,y,8eC akyu" = (a—yegy B8

One can verify that A((;)(HJ,,{_’;;CI),,)A’1 = (xz" 1 2" 1 X" + gy7" ) which is of the form of (0.1).

3.3. An example in degree 3 with indeterminacy points not aligned. —

Theorem 3.6. — Let @y, be the automorphism of the complex projective plane given by

a 2(1-a) 24+a—o?
Qo= | —1 0 o+1 , o e C\{0, 1}.
1 -2 1—-a
The map @oP3 has no invariant line and is conjugate to an automorphism of P2 blown up in 15 points.
The first dynamical degree of Qo P53 is HT‘E > 1.

The family @y ®3 is locally holomorphically trivial.

Remark 3.7. — The three points P, @q(P) and @q P3¢, (P) are not aligned in the complex projective plane. Indeed,
P=(1:0:0), pq(P)=(o: —1:1) and @qP3¢0x(P) = (u: 1:1).
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Proof. — The first assertion is given by a direct computation and Proposition 2.3, the second by Theorem 3.2.

Fix a point oy in C\ {0, 1}. We can find locally around o a matrix M, depending holomorphically on a such that for
all o near 0, we have @qP3 = M l(paO<I>3Ma : it suffices to take

1 0 op—a
Mg=10 1 0
00 1

3.4. A conjecture. — Let us recall a question which was communicated to the first author by E. Bedford:

Does there exist a birational map of the projective plane f such that for all ¢ in PGL(3;C), the map @f is not birationally
conjugate to an automorphism with positive entropy?

We do not know at the present time the answer to this question. However, after a long series of examples, it seems that
the birational maps ®,, satisfy a rigidity property:

Conjecture. — Let U be an open set of C¢, n be an integer greater than or equal to three and ¢y be a holomorphic
family of matrices in PGL(3;C) parameterized by U. Assume that there exists a positive integer k such that

(k4+1)(2n—1) > 10, (¢a®,)'@a(P) # P for 0 <i<k—1 and (9u®,) 0 (P2) = P.
Then (Qq®,,)acy is holomorphically trivial.

Let us remark that the maps of the form (0.1) don’t satisfy this conjecture: for n = 6 the family f, is not holomorphically
trivial and one can verify that for any nonzero complex number s,

Afa= fu9B, where A= (sx sy :e(l —56)y+s6z) and B=(sx:s%y:z).

4. A birational cubic map blowing down one conic and one line
Let f denote the following birational map
f= (yzz Px(xz+)?) y(xz+y2)) ;

it blows up two points and blows down two curves, more precisely

Indf={R=(1:0:0),P=(0:0:1)}, Excf = (C:{xz+y2=O}) U(A’z{yzO}).
One can verify that f~! = (y(z2 —xy) 1 2(2% —xy) :xzz) and
Indf'={0=(0:1:0),R}, Excf ! = (C’ = {zz—xy:O}) U (A” = {ZZO}).
First we blow up R at left and right. We set
y=u E={u; =0} y=ris E={s; =0}
z=uvi =11 Ay ={rn=0}
where E is the exceptional divisor.
We have
Uy +vy ur+v up+v
f: (u17v1)—>(u1,u1v1)(y7z)—>(u%v1:u1+v1:u1(u1+v1))_>( 12 17 1 1) N ( 12 17u1)
uvi uivi (52) upvi (1v1)
and

1425, 1472 1 147
fﬁ (rhsl)_>(r1sl7sl)(yz)_>(r%s%;]_t,_r%sl;rlsl(]—‘y—r%sl))—> +2r12Sl’ +ris - —, +rysi .
¥4 risq risi ) rys risi (r1,s1)
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Hence () = {u; +v; =0} is senton E, E is blown down to @ = (0: 1 : 0) and § = (0,0),, ,,,) is an indeterminacy point.
Next we blow up P at left and Q at right:

X=1u F={u; =0} X=a G={ax =0}
y=1usvy z=aby

X =185 FZ{SzZO} XZCde GZ{dzZO}
y=s 2=dp

One can verify that

v 1
£ (u2,v2) = (u2,u2v2) () — (v% “14upv3 (1 —l—ugv%)) = (2 5 ) ,
1 +uzvs v2 (x)

f: (}’27S2) — (rzSQ,Sz —> 1:m rz—l—Sz rz—l—Sz)

( ulvl > _)( uvy u)
ui+v’ x.2) ui+vy’ ! (02-,(12)'

In particular F is sent on C; and E; is blown down to T = (0, 0)(C2 &)- Moreover,

(x,y)—>(y2:X(X+y2) y(x+y%) ) —><y2,y)
xx+y X (x,2) X+y- ' x (c2.db)

so that A} is blown down to 7.

and

i (uth) — (M%Vl Tup vy u1 +v1

Then we blow up S at left and T at right

Uy = u3 HZ{M3:0} o =a3 K:{a3:()}
Vi =usvs dr = azbs
Uy =r3s3 H= {53 =0} ¢ = c3d3 K = {d3 =0}
V1 =353 dr = d3
We compute:

2
f:(uz,v3) — (u3,u3V3)(ul,V1) — (M%V3 s 14vsus(l +V3)) N ( uzv3 ,u3>
(x.2)

1-|-V3
< uszvs 3) ( V3 3)
1 V3 ’ (Cz,dz) 1 v3 ’ (Cg.d3)

uivy Vi
I (M17V1)%< ,u1> H( 7M1) :
ur+vi (c1,d1) ur+vi (e3,d3)

Thus H is sent on K, E is blown down to V = (1,0), 4;) and U = (0, —1) (4, ,,) is an indeterminacy point. One can
also remark that

and

so A} is blown down to V.

We will now blow up U at left and V' at right
{u3:u4 LZ{L{4=0} {C3=a4+1 MZ{CMZO}

V3 = M4V4—1
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U3z = 1484 LZ{S4=0} c3 =cqdy+1 MZ{d4=0}
V3 = 84 — 1 d3 = d4
We get
us(ugvs — 1) ugvy — 1
I (ua,va) = (ug,uqvy — 1)(,437,,3) — (M4(M4V4 —1):vy: u4V4> = —— 4 — U4 ,
va (x2) va (c2.2)
fi (r4,S4) — (V4S4,S4 — 1)(u3’v3) — (V£S4(S4 — 1) o1 V4S4)
and

1
f1(u,v) — < o 7M1) — (— 7u1> ;
ur+vi (c3,d3) ur+vi (c4,ds)

is an indeterminacy point, L is sent on G, and E3 on M.

X oy Xy Yy
C(y) = | —, = = |(-——=,=
fi @) <X+y2 x)(c3,d3) ( x+y2 x><¢-4,d4)

i.e. A} is blown down to Z = (0,0) ¢, 4,)-

therefore ¥ = (0,0)
Furthermore

u4,v4)

Finally we blow up Y at left and Z at right

Us = us NZ{M5:0} c4 = as Q:{asz()}
V4 = U5V5 dy = asbs

Uy = rsss N ={ss =0} ¢4 = csds Q= {ds =0}
V4 =S85 dy =ds

Hence Af is sent on & and N on AY.

Proposition 4.1. — Let Py (resp. P,) denote the point infinitely near R (resp. Q) obtained by blowing up R, S, U and Y
(resp. Q, T,V and Z). The map f induces an isomorphism between Blﬁ1 PIE”2 and Bllg2 R IP2. The different components
are swapped as follows: /

C —E, F—(C, H— K, L — G, E—M, AN —Q, N— A"
The following statement gives the gluing conditions.

Proposition 4.2. — Let u(x,z) = Z m;, jxizj , Z n;, jxiz-f be a germ of biholomorphism at Q.
(i,j)EN? (i,j)EN?
Then u can be lifted to a germ of biholomorphism between Blp, P? and Bl5 IP? if and only if
— moo =hoo =0;
- ng1 =0;
— np2+nip +m(2)71 =0;
— no3+ni1+2mo1(mo2+mio) =0.

Let @ be an automorphism of P2. We will adjust @ such that (¢f)*@ sends P, onto P; and R onto P. As we have
to blow up P2 at least ten times to have nonzero entropy, k must be larger than two, {P|, 0P2, @f9P, (¢f)>¢Ps, ...,
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(¢f)*'@Py} must all have distinct supports and (¢ f)*@P, = P|. We provide such matrices for k = 3 : by Proposition 4.2
one can verify that for every nonzero complex number «,

20(371V343) o -2 (5iV3+11)
Pu=| L(~15+11iv3) 1 —&(5iV3+11)

-2(2iv3+3) 0 0

is such a ¢.

Theorem 4.3. — Assume that f = (yzz:X(XZerz) :y(xz+y2)) and that
20371V34+3) o -2 (5iV3+11)
C15+11V3) 1 —&(siV3+11) |, aeC.

~2(2iv/343) 0 0

The map @y f is conjugate to an automorphism of P> blown up in 15 points.

The first dynamical degree of @y f is M Qg f) = 3+\f
The family Qg f is locally holomorphically trzvza]

Do,

Proof. — Set ¢ = @q. In the basis
{A"E,F,H,L,N, ¢E, ¢G, 9K, oM, Q. 9f9E, 990G, 9f 9K, 9foM, ¢f9Q}
the matrix M of (@f), is

00 2 00 1 00O0O0OO0OO0O0O0O0 0]
00 2 00 1 0O0O0OO0OO0OO0OT1O0OO0OTO0
o0 2 00 1 0O0O0OO0O0OT1TTUO0O0OO0TO0
o0 2 001 0O0O0OO0O0O0O0T1O0O0
o0 2 001 0O0O0OO0OO0OO0O0O0OT10O0
00 2 00 1 0O0O0O0OO0OO0O0OO0OTO0?1
00 -100-100U0O0O0O0O0OO0OO0O
o0 -1ro1 -10000O0O0O0O0OO0OTGO0
o0 -210 -1 00D0O0O0O0OO0O0OO0OTGO
o1 -300 -100O0O0OO0O0OO0O0OTGO0OO
1 0 -400 -1 000O0O0OO0OO0OOTGOOGO
o0 0 00 O 1 0O0OO0OO0OO0OO0OO0OO0OO0
o0 0 00 O O1O0O0O0O0O0OO0OO0OTO0
o0 0 00 O O0O0O1O0O0O0O0O0OO0TO0
o0 0 00 O OOOT1TTUOOOOOO

L1000 0 00 0 0O0O0OO0OCT1O0O0OO0O0 0|

Its characteristic polynomial is (X — 1)*(X 4+ 1)2(X2 — X + 1) (X2 + X + 1)3(X2 — 3X + 1). Hence A(@f) = 255.

Fix a point 0y in C*. We can find locally around 0y a matrix M, depending holomorphically on a such that for all o
near 0, we have Qq f = M&l(paofMa : take

1 0 O
o
Mo = 0 o 02
0 0 %
5
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5. Families of rational surfaces

Families of rational surfaces are usually constructed by blowing up P? (or a Hirzebruch surface F,,) successively at N
points p1,...,py and then by deforming the points pi. Such deformations can be holomorphically trivial: the simplest
example is given by the family Blyy, , ... a1, ,,NIP’ where py,..., py are N distinct points in P2 and 7 — M, is a holomor-
phic curve in PGL(3; C) such that M = Id. In this section, our first aim is to describe deformations of rational surfaces,
using the general theory of Kodaira and Spencer ([Kod86]). Then, after a general digression about the generic numbers
of parameters of an algebraic deformation, we will give a practical way to count the generic number of parameters of a
given family of rational surfaces with no holomorphic vector field.

5.1. Deformations of basic rational surfaces. — Recall that every rational surface can be obtained by blowing up finitely
many times P2 of a Hirzebruch surface F,, (see [GH94]). A rational surface is called basic if it is a blowup of P2. By
([Nag60], Theorem 5), if f is an automorphism of a rational surface X such that f* is of infinite order on Pic(X), then X
is basic. Furthermore, by the main result of [Har87], X carries no nonzero holomorphic vector field.

For each integer N, let us define a sequence of deformations 7y : Xy — Sy as follows:
— Sp is a point and Xo = P2.
— Sn+1 =Xn; Xnvt1 = Blx, (Xn x5y Xn), where Xy is diagonally embedded in Xy x5, Xn; and Ty is obtained
by composing the blow up morphism from Xy to Xy X g, Xn with the first projection.

The varieties Sy and X are smooth and projective, they can be given the following geometric interpretation:
— For N > 1, Sy is the set of ordered lists of (possibly infinitely near) points of P? of length N. This means that

Sy ={p1,-..,pn such that p; € P*and if 2 <i <N, p; € Bl,, ,Bl,, ,...Bl, P?}.

Elements of Sy will be denoted by P.
— For N > 1, Xy is the universal family of rational surfaces over Sy : for every P in Sy, the fiber 75;,1 (P)of Pin Xy
is the rational surface BIA]P’2 parameterized by P.

The group PGL(3; (C) of blholomorphlsms of P? acts naturally on the configuration spaces Sy. If g is an element
of PGL(3;C) and P lies in SN, g P is the unique element of Sy such that 8 induces an isomorphism between Bls P?
and Bl gﬁ]P’z. Furthermore, if Pisa point in Sy and G;, is the stabilizer of P in PGL(3;C), the Lie algebra of Gﬁ is the

vector space of holomorphic vector fields on BllgIP’z.

In the sequel, for every integer N > 4, we will denote by S}L\, the Zariski-dense open subset of Sy consisting of points P
in Sy such that G is trivial. The associated rational surfaces {Blﬁ}P’z, Pe S]TV} are rational surfaces in the family Xy
carrying no nonzero holomorphic vector field. Besides, the action of PGL(3;C) defines a regular foliation on SN

For any point P in Sy, let Oj be the PGL(3;C)-orbit of Pin Sy.
Theorem 5.1. — For any point Pins ~, the kernel of the Kodaira-Spencer map of Xy at Pis equal to Tz Op.

Before giving the proof, we start by some generalities. Let (¥,m,B) be a deformation and b be a point in B. Recall
that X is complete at b if any small deformation of X}, is locally induced by X via a holomorphic map. Let us quote two
fundamental results in deformation theory (see [Kod86], p. 270 and 284):

(i) Theorem of existence. Let X be a complex compact manifold such that H?(X,TX) = 0. Then there exists a
deformation (X, T, B) of X such that Xy = X and KS(X) : ToB — H'(X, TX) is an isomorphism.

(ii) Theorem of completeness. Let (X,7,B) be a deformation and b be in B such that KS,(%): T,B — H' (X, TX},)
is surjective. Then X is complete at b.

As a consequence, if (X,m,B) is a deformation which is complete at a point b of B and such that H?(%,,TX;) =0, then
KS,(X) is surjective.
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Definition 5.2. — Let (X,n,B) be a deformation. The blown up deformation X is a deformation over X defined by
X =Blx (X x5 X), where X is diagonally embedded in X x  X. The projection from X to X is induced by the projection
on the first factor.

Thus, for any x in X, X = Bl,(X}p), where b = 7t(x). The following result is originally due to Fujiki and Nakano and in
a more general setting to Horikawa:

Proposition 5.3 ([FN72, Hor76]). — Let (X, 7, B) be a deformation, b be a point of B and assume that X is complete
at b. Then the blown up deformation X is complete at any point of Xp.

Remark that for every integer N, %N = Xn+1- Since Xy is complete, it follows by induction that for every integer N,
Xn is complete at any point of Sy.

Lemma 5.4. — Let X be a rational surface obtained from the projective plane P*> via N, blow up and N_ blow down.
If N =N, —N_, then

- h'(X,TX) = h%(X,TX) 42N —8;

- h?(X,TX) =0.

Proof. — See [Kod86], p. 220. O

The second statement of the previous lemma together with the completeness of X implies that the Kodaira-Spencer
map of X is surjective at any point of Sy.

Proof of Theorem 5.1. — Let N be a positive integer and Pa point in Sy. Since the restriction of Xy on O is trivial,
kerKSs(Xy) contains T Op. Let us compute the dimension of T Op. If G is the stabilizer of P in PGL(3;C), one has
an exact sequence

0 — Lie(Gp) — Lie(PGL(3;C)) — T5 05 — 0.
Thus dim(T5 Op) = 8 —h°(X, TX). Otherwise, since KS5(Xy) is surjective, we get

dim(kerKS5(Xy)) = 2N —h' (X, TX) = 8 —h’(X, TX)
by the first assertion of Lemma 5.4. O

Remark that if N > 4, the kernels of the Kodaira-Spencer maps of X define a holomorphic vector bundle of rank eight
on S,T\,7 which is the tangent bundle of the regular foliation defined by the PGL(3;C)-action on S;(,.

We will also discuss deformations of nonbasic rational surfaces in §5.4.

5.2. Generic numbers of parameters of an algebraic deformation. — In the section, we define the generic numbers
of parameters of an algebraic deformation. Recall that a deformation (¥, 7, B) is algebraic if there exists an embedding
i: X — B x PV such that 7 is induced by the first projection of B x PV. If X is algebraic, the fibers (X})5cp are complex
projective varieties.

Proposition 5.5. — Let (X, 1, B) be an algebraic deformation. Then there exist a proper analytic subset Z of B and a
holomorphic vector bundle E on U = B\ Z such that:

— E is a holomorphic subbundle of TU

— the function b +— h' (X, TX}) is constant on U,

— forall b in B, Ej;, is the kernel of KS;(X).

Proof. — Let T™'X be the relative tangent bundle of X defined by the exact sequence

0— T°% — TX - "TB — 0,

where the last map is the differential of &. The connection morphism u: TB ~ R%x, (n*TB) — R'7, T™'X induces for
every b in B a map
pp: TpB — (R'm, TX™), — H'(X,,TX,)
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which is exactly the Kodaira-Spencer map of X at b (see [Voi07], p. 219). Since the deformation X is algebraic, there
exists a complex E* of vector bundles on B such that for every b in B, H' (X}, TX},) is the cohomology in degree one of
the complex E;;, (see [Voi07], p. 220). This implies that the function b — dimH! (%5, TX}) is constant outside a proper
analytic subset Z of B. By Grauert’s theorem ([Har77], p. 288), R'7, TX™! is locally free on U = B\ Z and for every b
in U, the base change morphism from RITE*T%TEI to H!(X,,TX;) is an isomorphism. After removing again a proper
analytic subset in U, we can assume that u has constant rank on U, so that its kernel is a holomorphic vector bundle. [J

This being done, the definition of the generic number of parameters of an algebraic deformation runs as follows:
Definition 5.6. — The number m(X) = dimB —rank E is called the generic number of parameters of X.

Remark 5.7. — (i) Recall that a deformation (X, 7, B) is called effectively parameterized (resp. generically effec-
tively parameterized) if for every b in B (resp. for every generic b in B), the Kodaira-Spencer map KS;(X) :
TyB — H' (X, TX},) is injective (see [Kod86], p. 215). By Proposition 5.5, an algebraic deformation (X, 7, B) is
generically effectively parameterized if and only if m(X) = dimB.

(ii) By Theorem 5.1, for any integer N > 4, m(Xy) = 2N — 8.

5.3. How to count parameters in a family of rational surfaces?— Let ) be a family of rational surfaces parameterized
by an open set U of C". Since the deformations Xy are complete, we can suppose that ) is obtained by pulling back
the deformation Xy by a holomorphic map y: U — Sy. We will make the assumption that the fibers of 2) have no
holomorphic vector field, so that y takes its values in SIT\,. In this situation, we are able to compute the numbers of
parameters of such a family quite simply:

Theorem 5.8. — Let U be an open set in C*, N be an integer greater than or equal to 4 and y: U — S;(, be a holomor-
phic map. Then m(y*Xy) is the smallest integer d such that for all generic o in U, there exist a neighborhood Q of 0 in
C"“ and two holomorphic maps y: Q — U and M : Q — PGL(3;C) such that:

— v«(0) is injective,

- ¥(0) = o and M (0) = Id,

— forallt in Q, y (y(7)) = M(1) y(a).

Proof. — Let o be a generic point in U, Uy be a small neighborhood of o and Zy, = y(Uy); Zy, is a smooth complex
submanifold of S;‘V passing through y(a). The rank of y is generically constant, so that after a holomorphic change of
coordinates, we can suppose that Uy = Vi, X Z and that  is the projection on the second factor. If (v, z) is a point of
Vo X Zq, the kernel of KSy, (y*Xy) is the set of vectors (h,k) in T,V @ T,Z,, such that k is tangent to the orbit O,. If
o is sufficiently generic, these kernels define a holomorphic subbundle of T(Vy, X Zy,) of rank n — m(y*Xy), which is
obviously integrable because the PGL(3; C)-orbits in S}:, define a regular foliation. Let V, X Ty, be the associated germ of
integral manifold passing through a. For every point z in Ty, T, Ty is included in T,O,. Thus Ty, is completely included
in the orbit Oy(y). Let Y be a local parametrization of Vg X Ty. As the natural orbit map from PGL(3;C) to Oy is a
holomorphic submersion, we can choose locally around y(ot) a holomorphic section s such that s(y(a)) = Id. If we
define M(t) = s[y(7)], then y(¢) = M (1) y(t).

Conversely, let o be a generic point in U, d be an integer and (y, M) satisfying the hypotheses of the theorem. The
image of y defines a germ of smooth subvariety Yy in U passing through o, and its image by Y is entirely contained in
the orbit Oy ). This implies that the restriction of y*(Xy) to Yy is holomorphically trivial. Thus Te Y is contained in
the kernel of KSq (W*Xy). Since dimYy, = n —d, we obtain m(y*Xy) <d. O

5.4. Nonbasic rational surfaces. — We will briefly explain how to adapt the methods developed above to nonbasic
rational surfaces, although we won’t need it in the paper. The situation is more subtle, even for Hirzebruch surfaces.
Indeed, if n > 2, Aut(FF,) has dimension n+ 5 (see [Bea78]) so that h!(F,,TF,) = n— 1 and h?*(F,,TF,) = 0 by
Lemma 5.4. Therefore the Hirzebruch surfaces IF,, are not rigid if n > 2. Complete deformations of Hirzebruch sur-
faces (IF,),>2 are known and come from flat deformations of rank-two holomorphic bundles on P! (C) (see [Man04],



AUTOMORPHISMS OF RATIONAL SURFACES WITH POSITIVE ENTROPY 23

Chap. IT). These deformations (§,),>2 are highly noneffective because their generic number of parameters is zero. The
fibers of §, are Hirzebruch surfaces IF,,_;; of smaller index.
The deformations of nonbasic rational surfaces can be explicitly described using the same method as in §5.1: for every

integer n > 2, define inductively a sequence of deformations fin ,: Sn,n — Svn by So,n = §n and Sny1,0 = Snva (cf
Definition 5.2). This means that

SN,n = {a, P1s---3PN |6l € Fna P1€ (gn)aa p2 € Blpl (Sn)av ...,PN € Ble,l . ~B1p1 (Sn)a}
and that (§nn)a,py,....px = Blpy - Blp, (Sn)a- .
If X = BIzFF, is a nonbasic rational surface, then P defines a point in Sy , for a certain integer N. By Proposition 5.3,

$n,n is complete at P. Therefore small deformations of a nonbasic rational surface can be parameterized by (possibly
infinitely near) points on Hirzebruch surfaces [F,, but n can jump with the deformation parameters.
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