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AUTOMORPHISMS OF RATIONAL SURFACES WITH POSITIVE ENTROPY

by

Julie Déserti & Julien Grivaux

Abstract. — A complex compact surface which carries an automorphism of positive topological entropy has been proved by Cantat
to be either a torus, a K3 surface, an Enriques surface or a rational surface. Automorphisms of rational surfaces are quite mysterious
and have been recently the object of intensive studies. In this paper, we construct several new examples of automorphisms of
rational surfaces with positive topological entropy. We also explain how to count parameters in families of rational surfaces.
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Introduction

If X is a topological space and f is a homeomorphism of X , the topological entropy of f , denoted by htop( f ), is a
nonnegative number measuring the complexity of the dynamical system (X , f ). If X is a compact Kähler manifold
and f is a biholomorphism, then htop( f ) = sup1≤p≤dimX δp( f ), where δp( f ) is the p-th dynamical degree of f , i.e. the
spectral radius of f ∗ acting on Hp,p(X) (see [Gro03, Gro87, Yom87]). When X is a complex compact surface (Kähler or
not) carrying a biholomorphism of positive topological entropy, Cantat has proved in [Can99] that X is either a complex
torus, a K3 surface, an Enriques surface or a nonminimal rational surface. Although automorphisms of complex tori are
easy to describe, it is rather difficult to construct automorphisms on K3 surfaces or rational surfaces (constructions and
dynamical properties of automorphisms of K3 surfaces can be found in [Can99] and [McM02]). The aim of this paper
is to develop a general method to construct explicit examples of automorphisms of rational surfaces.

The first examples of rational surfaces endowed with biholomorphisms of positive entropy are due to Kummer and
Coble ([Cob61]). The Coble surfaces are obtained by blowing up the ten nodes of a nodal sextic in P2(C), the Kummer
surfaces are desingularizations of quotients of complex 2-tori by involutions with fixed points. Obstructions to the exis-
tence of such biholomorphisms on rational surfaces are also known: if X is a rational surface and f is a biholomorphism
of X such that htop( f ) > 0, then the representation of the automorphisms group of X in GL(Pic(X)) given by g 7→ g∗

has infinite image. This implies by a result of Harbourne ([Har87]) that its kernel is finite, so that X has no nonzero
holomorphic vector field. A second consequence which follows from ([Nag60], Theorem 5) is that X is basic, i.e. can
be obtained by successive blowups from the projective plane P2(C); furthermore, the number of blowups must be at
least ten.

The first infinite families of examples have been constructed independently in [McM07] and [BK09a] by different
methods. The rational surfaces are obtained by blowing up distinct points of P2(C). The corresponding automorphisms
come from birational quadratic maps of P2(C) which are of the form Aσ, where A is in PGL(3;C) and σ is the Cremona
involution. These constructions yield a countable family of examples.

More recently, Bedford and Kim constructed arbitrary big holomorphic families of rational surfaces endowed with
biholomorphisms of positive entropy. These families are explicitly given as follows:

Theorem 1 ([BK]). — Consider two integers n ≥ 3 and k ≥ 2 such that n is odd and (n,k) 6= (3,2). There exists a
nonempty subset Ck of R such that, if c ∈Ck and a = (a2,a4, . . . ,a[ n−3

2 ]) ∈ C[ n−3
2 ], the map

fa : (x : y : z)→
(

xzn−1 : zn : xn− yzn−1 + czn +
n−3

∑
`=2

` even

a`x`+1zn−`−1
)

(0.1)

can be lifted to an automorphism of a rational surface Xa, with positive topological entropy. The surfaces Xa are obtained
by blowing up k infinitely near points of length 2n−1 on the invariant line {x = 0} and form a holomorphic family over
the parameter space given by the a j

′s. If k = 2 and n≥ 4 is even, then, for a and a′ near 0, Xa and Xa′ are biholomorphic
if and only if a = a′.

These examples are generalizations of the birational cubic map introduced by [HV00b, HV00a] and studied by [Tak01a,
Tak01b, Tak01c].

Our paper is devoted to the construction of examples of rational surfaces with biholomorphisms of positive entropy
in a more systematic way than what has been done before. Our strategy is the following: start with f a birational
map of P2(C). By the standard factorization theorem for birational maps on surfaces as a composition of blow up
and blow down, there exist two sets of (possibly infinitely near) points P̂1 and P̂2 in P2(C) such that f can be lifted
to an automorphism between P2(C) blown up in P̂1 and P2(C) blown up in P̂2. The data of P̂1 and P̂2 allow to get
automorphisms of rational surfaces in the left PGL(3;C)-orbit of f : assume that k ∈ N is fixed and let ϕ be an element
of PGL(3;C) such that P̂1, ϕP̂2, (ϕ f )ϕP̂2, . . . , (ϕ f )k−1ϕP̂2 have pairwise disjoint supports in P2(C) and that (ϕ f )kϕP̂2 =

P̂1. Then ϕ f can be lifted to an automorphism of P2(C) blown up at P̂1, ϕP̂2, (ϕ f )ϕP̂2, . . . , (ϕ f )k−1ϕP̂2. Furthermore,
if the conditions above are satisfied for a holomorphic family of ϕ, we get a holomorphic family of rational surfaces
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(whose dimension is at most eight). Therefore, we see that the problem of lifting an element in the PGL(3;C)-orbit
of f to an automorphism is strongly related to the equation u(P̂2) = P̂1, where u is a germ of biholomorphism of P2(C)
mapping the support of P̂2 to the support of P̂1. In concrete examples, when P̂1 and P̂2 are known, this equation can
actually be solved and involves polynomial equations in the Taylor expansions of u at the various points of the support
of P̂2. It is worth pointing out that in the generic case, P̂1 and P̂2 consist of the same number d of distinct points
in the projective plane, and the equation u(P̂2) = P̂1 gives 2d independent conditions on u (which is the maximum
possible number if P̂1 and P̂2 have length d). Conversely, infinitely near points can considerably decrease the number
of conditions on u as shown in our examples. This explains why holomorphic families of automorphisms of rational
surfaces occur when multiple blowups are made.

Let us describe the examples we obtain. We do not deal with the case of the Cremona involution σ because birational
maps of the type Aσ, with A in PGL(3;C), are linear fractional recurrences studied in [BK06, BK09a], and our approach
does not give anything new in this case. Our first examples proceed from a family (Φn)n≥2 of birational maps of P2(C)
given by Φn(x : y : z) = (xzn−1 + yn : yzn−1 : zn). These birational maps are very special because their exceptional locus
is a single line, the line {z = 0}; and their indeterminacy locus is a single point on this line, the point P = (1:0 : 0). We
compute explicitly P̂1 and P̂2 and obtain sequences of blowups already done in [BK]. Then we exhibit various families
of solutions of the equation (ϕΦn)

k−1ϕP̂2 = P̂1 for k = 2,3 and ϕ in PGL(3;C); this yields automorphisms of rational
surfaces with positive topological entropy. Many of our examples are similar or even sometimes linearly conjugate to
those constructed in [BK]: they have an invariant line and the sequences of blowups are of the same type. However, for
(n,k) = (3,2) we have found an example of a different type satisfying that P, ϕP and ϕΦ3ϕP are not on the same line:

Theorem 2. — If α is a complex number in C\{0, 1}, let ϕα be the element of PGL(3;C) given by

ϕα =

 α 2(1−α) 2+α−α2

−1 0 α+1
1 −2 1−α

 .
The map ϕαΦ3 has no invariant line and is conjugate to an automorphism of P2(C) blown up in 15 points; its first
dynamical degree is 3+

√
5

2 .

Before going further, let us introduce the following terminology: let U be an open set of Cn, (ϕα)α∈U be a holomorphic
family of matrices in PGL(3;C) parameterized by U and f be a birational map of the projective plane. We say that the
family (ϕα f )α∈U is locally holomorphically trivial if for every parameter α0 in U there exists a family of matrices Mα

of PGL(3;C) parameterized by a neighborhood of α0 such that Mα0 = Id and for all α near α0, ϕα f = M−1
α (ϕα0 f )Mα.

The family of birational maps of Theorem 2, as well as our other examples, are all locally holomorphically trivial. After
many attempts to produce nontrivial holomorphic families, we have been led to conjecture that all families ϕαΦn which
yield automorphisms of positive topological entropy are locally holomorphically trivial. Nevertheless this phenomenon
is not a generality. Theorem 1 gives, for n ≥ 5, examples of families of birational maps of the type ϕα f conjugate to
families of automorphisms of positive entropy on rational surfaces which are not locally holomorphically trivial (see
section 3.4).

We finally carry out our method for another birational cubic map, namely f (x : y : z) =
(

y2z : x(xz+ y2) : y(xz+ y2)
)
.

This map blows down a conic and a line intersecting transversally the conic along the two indeterminacy points. We
obtain the following result:

Theorem 3. — Let α be a nonzero complex number and

ϕα =



2α3

343
(37i
√

3+3) α −2α2

49
(5i
√

3+11)

α2

49
(−15+11i

√
3) 1 − α

14
(5i
√

3+11)

−α

7
(2i
√

3+3) 0 0


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The map ϕα f is conjugate to an automorphism of P2(C) blown up in 15 points, its first dynamical degree is 3+
√

5
2 .

Besides, the family ϕα f is locally holomorphically trivial.

This example seems completely new, the configuration of exceptional curves shows that it is not linearly conjugate to
any of the already known examples (although we do not know if it is the case when linear conjugacy is replaced by
birational conjugacy).

In the last part of the paper, we propose an approach in order to define and count the generic numbers of parameters in
a given family of rational surfaces. The good setting for this study is the theory of deformations of complex compact
manifolds of Kodaira and Spencer. A deformation is a triplet (X,π,B) such that X and B are complex manifolds and
π : X→B is a proper holomorphic submersion. If X is a complex compact manifold, a deformation of X is a deformation
(X,π,B) such that for a specific b in B, Xb is biholomorphic to X .

If (X,π,B) is a deformation and X is a fiber of X, Ehresmann’s fibration theorem implies that X is diffeomorphic
to X × B over B. Therefore, a deformation can also be seen as a family of integrable complex structures (Jb)b∈B
on a fixed differentiable manifold X , varying holomorphically with b. The main tool of the theory is the Kodaira-
Spencer map: if (X,π,B) is a deformation and b0 is a point of B, the Kodaira-Spencer map of X at b0 is a linear map
KSb0

(X) : Tb0
B→ H1(Xb0

,TXb0
), which is intuitively the differential of the map b 7→ Jb at b0 . If (X,π,B) is a defor-

mation of projective varieties, we prove that the kernels of KSb(X) have generically the same dimension and define a
holomorphic subbundle EX of TB. This leads to a natural definition of the generic number m(X) of parameters of a
deformation X as m(X) = dimB− rankEX. In the case m(X) = dimB, we say that X is generically effective; this means
that for b generic in B, KSb(X) is injective. This is slightly weaker than requiring that different fibers of X are not
biholomorphic (as in [BK]), but much easier to verify in concrete examples.

From a theoretical point of view, deformations of basic rational surfaces are easy to understand. The moduli space
of ordered (possibly infinitely near) points in the projective plane P2 of length N is a smooth projective variety SN of
dimension 2N obtained by blowing up successive incidence loci. There exists a natural deformation XN over SN whose
fibers are rational surfaces: if P̂ is in SN , then (XN)P̂ is equal to BlP̂P

2. This deformation is complete at any point of SN ,
i.e. every deformation of a fiber of XN is locally induced by XN up to holomorphic base change. Therefore, if (X,π,B)
is a deformation of a basic rational surface, all the fibers in a small neighborhood of the central fiber remain rational
and basic (this is no longer the case for nonbasic rational surfaces).

There is a natural PGL(3;C)-action on SN which can be lifted on XN . This action can be used to describe the Kodaira-
Spencer map of XN : if P̂ is in SN , KSP̂ (XN) is surjective and its kernel is the tangent space at P̂ of the PGL(3;C)-orbit
of P̂ in SN . If N ≥ 4, let S†

N be the Zariski-dense open set of points P̂ in SN such that BlP̂P
2 has no nonzero holomorphic

vector field. Since XN is complete, families of rational surfaces with no nonzero holomorphic vector fields can locally
be described as the pullback of XN by a holomorphic map from the parameter space to S†

N . We provide a practical way
to count the generic number of parameters in such families:

Theorem 4. — Let U be an open set in Cn, N be an integer greater than or equal to 4 and ψ : U→ S†
N be a holomorphic

map. Then m(ψ∗XN) is the smallest integer d such that for all generic α in U, there exist a neighborhood Ω of 0 in
Cn−d and two holomorphic maps γ : Ω→U and M : Ω→ PGL(3;C) such that:

– γ∗(0) is injective,
– γ(0) = α and M(0) = Id,
– for all t in Ω, ψ(γ( t)) = M( t)ψ(α).

Acknowledgements. — We would like to thank E. Bedford, D. Cerveau and C. Favre for fruitful discussions. We also
thank M. Manetti for the reference [Hor76].
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1. Algebraic and dynamical properties of birational maps

A rational map from P2(C) into itself is a map of the following type

f : P2(C) 99K P2(C), (x : y : z) 7→
(

f0(x,y,z) : f1(x,y,z) : f2(x,y,z)
)

where the fi’s are homogeneous polynomials of the same degree without common factor. The degree of f is equal to
the degree of the fi’s. A birational map is a rational map whose inverse is also rational. The birational maps of P2(C)
into itself form a group which is called the Cremona group and denoted Bir(P2).

If f is a birational map, Ind f denotes the finite set of points blown up by f ; this is the set of the common zeroes of
the f ′i s. We say that Ind f is the indeterminacy locus of f . The set of curves collapsed by f , called exceptional set of f ,
is denoted Exc f ; it can be obtained by computing the jacobian determinant of f .

The degree is not a birational invariant; if f and g are in Bir(P2), then usually deg(g f g−1) 6= deg f . Nevertheless there
exist two strictly positive constants α and β such that for all integer n the following holds:

αdeg f n ≤ deg(g f ng−1)≤ βdeg f n.

This means that the degree growth is a birational invariant.

Let us recall the notion of first dynamical degree introduced in [Fri95, RS97]: if f is in Bir(P2), the first dynamical
degree of f is defined by

λ( f ) = lim(deg f n)1/n.

More generally we can define this notion for bimeromorphic maps of a Kähler surface. A bimeromorphic map f on a
Kähler surface X induces a map f ∗ from H1,1(X ,R) into itself. The first dynamical degree of f is given by

λ( f ) = lim(|( f n)∗|)1/n.

Let f be a map on a complex compact Kähler surface; the notions of first dynamical degree and topological entro-
py htop( f ) are related by the following formula: htop( f ) = logλ( f ) (see [Gro03, Gro87, Yom87]).
Diller and Favre characterize the birational maps of P2(C) up to birational conjugacy; the case of automorphisms with
quadratic growth is originally due to Gizatullin.

Theorem 1.1 ([DF01, Giz80]). — Let f be a bimeromorphic map of a Kähler surface. Up to bimeromorphic conju-
gacy, one and only one of the following holds.

– The sequence (|( f n)∗|)n∈N is bounded, f is an automorphism on some rational surface and an iterate of f is an
automorphism isotopic to the identity.

– The sequence (|( f n)∗|)n∈N grows linearly and f preserves a rational fibration; in this case f is not an automor-
phism.

– The sequence (|( f n)∗|)n∈N grows quadratically and f is an automorphism preserving an elliptic fibration.
– The sequence (|( f n)∗|)n∈N grows exponentially.

In the second (resp. third) case, the invariant fibration is unique. In the three first cases λ( f ) is equal to 1, in the last
case λ( f ) is strictly larger than 1.

Examples 1.2. — – If f is an automorphism of P2(C) or a birational map of finite order, then (deg f n)n is bounded.
– The map f : (x : y : z) 99K (xy : yz : z2) satisfies that (deg f n)n grows linearly.
– A Hénon map, i.e. an automorphism of C2 of the form

f : (x,y) 7→ (y,P(y)−δx), δ ∈ C∗, P ∈ C[y], degP≥ 2,

can be viewed as a birational map of P2(C) and λ( f ) = degP > 1.
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Let f be a bimeromorphic map on a Kähler surface X . To relate λ( f ) to the spectral radius of f ∗ we need the equali-
ty ( f ∗)n = ( f n)∗ for all n. When it occurs we say that f is analytically stable ([FS95, Sib99]). An other characterization
can be found in ([DF01], Theorem 1.14): the map f is analytically stable if and only if there is no curve C ⊂ X such
that f k(C )⊂ Ind f for some integer k≥ 0. Up to a change of coordinates, one can always assume that a bimeromorphic
map of a Kähler surface is analytically stable (see [DF01]). For instance, if f is an automorphism, then f is analytically
stable and λ( f ) is the spectral radius of f ∗. Besides, since f ∗ is defined over Z, λ( f ) is also the spectral radius of f∗.

Let us recall some properties about blowups of the complex projective plane. Let p1, . . . , pn be n (possibly infinitely
near) points in P2(C) and Blp1,...,pnP2 denote the complex manifold obtained by blowing up P2(C) at p1, . . . , pn.

– We may identify Pic(Blp1,...,pnP2) and H2(Blp1,...,pnP2,Z) so we won’t make any difference in using them.
– If π : Blp1,...,pnP2→ P2(C) is the sequel of blowups of the n points p1, . . . , pn, H the class of a generic line and

E j = π−1(p j) the exceptional fibers, then {H, E1, . . . , En} is a basis of Pic(Blp1,...,pnP2).

– Assume that n≤ 9 and that f : Blp1,...,pnP2→ Blp1,...,pnP2 is an automorphism. Then the topological entropy of f
vanishes. If n≤ 8 then there exists an integer k such that f k descends to a linear map of P2(C) (see [Dil]).

In the sequel, P2 will denote the complex projective plane.

2. Birational maps whose exceptional locus is a line, I

Let us consider the sequence of birational maps defined by Φn = (xzn−1 + yn : yzn−1 : zn), with n ≥ 3. In this section
we first construct for every integer n ≥ 3 two infinitely near points P̂1 and P̂2 such that Φn induces an isomorphism
between BlP̂1

P2 and BlP̂2
P2. Then we give theoric conditions to produce automorphisms ϕ of P2 such that ϕΦn is

conjugate to an automorphism on a surface obtained from P2 by successive blowups.

In the affine chart z = 1, Φn is a polynomial automorphism which preserves the fibration y = cte, i.e. it is an elementary
automorphism; thus λ(Φn) = 1. More precisely the sequence (degΦk

n)k∈N is bounded, so Φn is conjugate to an auto-
morphism on some rational surface X and an iterate of Φn is conjugate to an automorphism isotopic to the identity. The
map Φn blows up one point P = (1 : 0 : 0) and blows down one curve ∆ = {z = 0}.

2.1. First step: description of the sequence of blowups. — We start by the description of two points P̂1 and P̂2 infinitely
near P of length 2n−1 such that Φn can be lifted to an automorphism between BlP̂1

P2 and BlP̂2
P2.

Convention: if D (resp. Di) is a curve on a surface X , we will denote by D1 (resp. Di+1) the strict transform of this
curve in X blown up at a point.

Let us blow up P at left and right; set y = u1, z = u1v1 then ∆1 = {v1 = 0} and the exceptional divisor E is given by
{u1 = 0}. We can also set y = r1s1, z = s1; in these coordinates E = {s1 = 0}. We get

Φn : (u1,v1)→ (u1,u1v1)(y,z)→
(

vn−1
1 +u1 : u1vn−1

1 : u1vn
1

)
=

(
u1vn−1

1

vn−1
1 +u1

,
u1vn

1

vn−1
1 +u1

)
(y,z)

→

(
u1vn−1

1

vn−1
1 +u1

,v1

)
(u1,v1)

;

hence E is fixed, ∆1 is blown down to P1 = (0,0)(u1,v1) = E∩∆1 and P1 is an indeterminacy point. One also can see that

Φn : (r1,s1)→ (r1s1,s1)(y,z)→
(

1+ rn
1s1 : r1s1 : s1

)
→
(

r1s1

1+ rn
1s1

,
s1

1+ rn
1s1

)
(y,z)
→
(

r1,
s1

1+ rn
1s1

)
(r1,s1)

.

Then we blow up P1 at left and right. Set u1 = u2, v1 = u2v2 so the exceptional divisor F is given by {u2 = 0} and ∆2
by {v2 = 0}. There is an other system of coordinates (r2,s2) with u1 = r2s2, v1 = s2; in this system, F = {s2 = 0}
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and E1 = {r2 = 0}. On the one hand

Φn : (u2,v2)→ (u2,u2v2)(u1,v1)→
(

un−2
2 vn−1

2 +1 : un−1
2 vn−1

2 : un
2vn

2

)
=

(
un−1

2 vn−1
2

un−2
2 vn−1

2 +1
,

un
2vn

2

un−2
2 vn−1

2 +1

)
(y,z)

→

(
un−1

2 vn−1
2

un−2
2 vn−1

2 +1
,u2v2

)
(u1,v1)

→

(
un−2

2 vn−2
2

un−2
2 vn−1

2 +1
,u2v2

)
(r2,s2)

;

on the other hand

Φn : (r2,s2)→ (r2s2,s2)(u1,v1)→
(

sn−2
2 + r2 : r2sn−1

2 : r2sn
2

)
→

(
r2sn−1

2

sn−2
2 + r2

,
r2sn

2

sn−2
2 + r2

)
(y,z)

→

(
r2sn−1

2

sn−2
2 + r2

,s2

)
(u1,v1)

→

(
r2sn−2

2

sn−2
2 + r2

,s2

)
(r2,s2)

.

So A1 = (0,0)(r2,s2) is an indeterminacy point and F is blown down to A1.

Moreover

Φn : (y,z)→ (zn−1 + yn : yzn−1 : zn)→
(

yzn−1

yn + zn−1 ,
zn

yn + zn−1

)
(y,z)
→
(

yzn−1

yn + zn−1 ,
z
y

)
(u1,v1)

→
(

y2zn−2

yn + zn−1 ,
z
y

)
(r2,s2)

;

hence ∆2 is blown down to A1.

The (n−3) next steps are of the same type, so we will write it one time with some indice k, 1≤ k ≤ n−3.
We will blow up Ak = (0,0)(rk+1,sk+1) at left and right. Set

rk+1 = uk+2, sk+1 = uk+2vk+2 & rk+1 = rk+2sk+2, sk+1 = sk+2.

Let us remark that (uk+2,vk+2) (resp. (rk+2,sk+2)) is a system of coordinates in which the exceptional divisor Gk is
given by Gk = {uk+2 = 0} and Gk−1

1 = {vk+2 = 0} (resp. Gk = {sk+2 = 0}, Ek+1 = {rk+2 = 0}). We have

Φn : (uk+2,vk+2)→ (uk+2,uk+2vk+2)(rk+1,sk+1)→
(

1+un−k−2
k+2 vn−k−1

k+2 : un−1
k+2vn−1

k+2 : un
k+2vn

k+2

)
→

(
un−k−2

k+2 vn−k−2
k+2

1+un−k−2
k+2 vn−k−1

k+2

,uk+2vk+2

)
(rk+2,sk+2)

and

Φn : (rk+2,sk+2)→ (rk+2sk+2,sk+2)(rk+1,sk+1)→
(

rk+2 + sn−k−2
k+2 : rk+2sn−1

k+2 : rk+2sn
k+2

)
→

(
rk+2sn−k−2

k+2

rk+2 + sn−k−2
k+2

,sk+2

)
(rk+2,sk+2)

.

So Ak+1 = Gk ∩Ek+1 = (0,0)(rk+2,sk+2) is an indeterminacy point and Gk, Gk−1
1 are blown down to Ak+2. Therefore

Φn : (y,z)→
(

zn−1 + yn : yzn−1 : zn
)
=

(
yzn−1

zn−1 + yn ,
zn

zn−1 + yn

)
(y,z)
→
(

yk+2zn−k−2

zn−1 + yn ,
z
y

)
(rk+2,sk+2)

so ∆k+2 is also blown down to Ak+1.
One can remark that

Φn : (u2,v2)→

(
un−2

2 vn−2
2

1+un−2
2 vn−1

2
,u2v2

)
(r2,s2)

→

(
un−k−2

2 vn−k−2
2

1+un−2
2 vn−1

2
,u2v2

)
(rk+2,sk+2)

,

hence Fk is blown down to Ak+1.
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Let us now blow up An−2 at left and right. Set rn−1 = un, sn−1 = unvn, and rn−1 = rnsn, sn−1 = sn. Let us remark
that (un,vn) (resp. (rn,sn)) is a system of coordinates in which the exceptional divisor is given by Gn−2 = {un = 0}
and Gn−3

1 = {vn = 0} (resp. Gn−2 = {sn = 0}). We compute

Φn : (un,vn)→ (un,unvn)(rn−1,sn−1)→
(

1+ vn : un−1
n vn−1

n : un
nvn

n

)
→
(

1
1+ vn

,unvn

)
(rn,sn)

and

Φn : (rn,sn)→ (rnsn,sn)(rn−1,sn−1)→
(

1+ rn : rnsn−1
n : rnsn

n

)
→
(

rn

1+ rn
,sn

)
(rn,sn)

.

This implies that Gn−2 is fixed, Gn−3
1 is blown down to the point S = (1,0)(rn,sn) of Gn−2 and the point T = (−1,0)(rn,sn)

of Gn−2 is an indeterminacy point.

On the one hand

Φn : (y,z)→
(

yn−1z
zn−1 + yn ,

z
y

)
(rn−1,sn−1)

→
(

yn

zn−1 + yn ,
z
y

)
(rn,sn)

so ∆n is blown down to S; on the other hand

Φn : (u2,v2)→

(
un−2

2 vn−2
2

1+un−2
2 vn−1

2
,u2v2

)
(r2,s2)

→

(
u2v2

1+un−2
2 vn−1

2
,u2v2

)
(rn−1,sn−1)

→

(
1

1+un−2
2 vn−1

2
,u2v2

)
(rn,sn)

,

hence Fn−2 is blown down to S.

Now we blow up T at left and S at right{
rn = un+1−1
sn = un+1vn+1

H = {un+1 = 0}
{

rn = an+1 +1
sn = an+1bn+1

K = {an+1 = 0}

{
rn = rn+1sn+1−1
sn = sn+1

H = {sn+1 = 0}
{

rn = cn+1dn+1 +1
sn = dn+1

K = {dn+1 = 0}

We obtain

Φn : (un+1,vn+1)→ (un+1−1,un+1vn+1)(rn,sn)→
(

1 : (un+1−1)un−2
n+1vn−1

n+1 : (un+1−1)un−1
n+1vn

n+1

)
=
(
(un+1−1)un−2

n+1vn−1
n+1,(un+1−1)un−1

n+1vn
n+1

)
(y,z)
→
(
(un+1−1)un−2

n+1vn−1
n+1,un+1vn+1

)
(u1,v1)

→
(
(un+1−1)un−3

n+1vn−2
n+1,un+1vn+1

)
(r2,s2)

→ . . .→
(
(un+1−1)vn+1,un+1vn+1

)
(rn−1,sn−1)

and

Φn : (rn+1,sn+1)→ (rn+1sn+1−1,sn+1)(rn,sn)→
(

rn+1 : (rn+1sn+1−1)sn−2
n+1 : (rn+1sn+1−1)sn−1

n+1

)
=

(
(rn+1sn+1−1)sn−2

n+1

rn+1
,
(rn+1sn+1−1)sn−1

n+1

rn+1

)
(y,z)

→

(
(rn+1sn+1−1)sn−2

n+1

rn+1
,sn+1

)
(u1,v1)

→

(
(rn+1sn+1−1)sn−3

n+1

rn+1
,sn+1

)
(r2,s2)

→ . . .→
(

rn+1sn+1−1
rn+1

,sn+1

)
(rn−1,sn−1)

.

Thus H is sent on Gn−3
2 and B1 = (0,0)(rn+1,sn+1) is an indeterminacy point. Moreover,

Φn : (un,vn)→
(

1
1+ vn

,unvn

)
(rn,sn)

→
(
− vn

1+ vn
,−un(1+ vn)

)
(an+1,bn+1)

,
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Φn : (y,z)→
(

yn

zn−1 + yn ,
z
y

)
(rn,sn)

→
(
− yzn−2

zn−1 + yn ,
z
y

)
(cn+1,dn+1)

and

Φn : (u2,v2)→

(
1

1+un−2
2 vn−1

2
,u2v2

)
(rn,sn)

→

(
−

un−3
2 vn−2

2

1+un−2
2 vn−1

2
,u2v2

)
(cn+1,dn+1)

.

Therefore Gn−3
2 is sent on K and ∆n+1, Fn−1 are blown down to C1 = (0,0)(cn+1,dn+1).

The (n−3) following steps are the same, so we will write it one time with some indice `, 1≤ `≤ n−3.
We blow up B` = (0,0)(rn+`,sn+`) at left and C` = (0,0)(cn+`,dn+`) at right

{
rn+` = un+`+1
sn+` = un+`+1vn+`+1

L` = {un+`+1 = 0}
{

cn+` = an+`+1
dn+` = an+`+1bn+`+1

M` = {an+`+1 = 0}

{
rn+` = rn+`+1sn+`+1
sn+` = sn+`+1

L` = {sn+`+1 = 0}
{

cn+` = cn+`+1dn+`+1
dn+` = dn+`+1

M` = {dn+`+1 = 0}

On the one hand

Φn : (un+`+1,vn+`+1)→ (un+`+1,un+`+1vn+`+1)(rn+`,sn+`)

→
(

1 : (u`+1
n+`+1v`n+`+1−1)un−`−2

n+`+1vn−`−1
n+`+1 : (u`+1

n+`+1v`n+`+1−1)un−`−1
n+`+1vn−`

n+`+1

)
→
(
(u`+1

n+`+1v`n+`+1−1)vn+`+1,un+`+1vn+`+1

)
(rn−1−`,sn−1−`)

and on the other hand

Φn : (rn+`+1,sn+`+1)→ (rn+`+1sn+`+1,sn+`+1)(rn+`,sn+`)

→
(

rn+`+1 : (rn+`+1s`+1
n+`+1−1)sn−`−2

n+`+1 : (rn+`+1s`+1
n+`+1−1)sn−`−1

n+`+1

)
→

(
rn+`+1s`+1

n+`+1−1
rn+`+1

,sn+`+1

)
(rn−1−`,sn−1−`)

.

So B`+1 = (0,0)(rn+`+1,sn+`+1) is an indeterminacy point, L` is sent on Gn−3−`
2`+2 if 1≤ `≤ n−4 and Ln−3 is sent on F2n−4.

Remark that B`+1 is on L` but not on L`−1
1 . Besides one can verify that

Φn : (y,z)→
(
−y`+1zn−`−2

zn−1 + yn ,
z
y

)
(cn+`+1,dn+`+1)

and that Φn : (u2,v2)→

(
−

un−`−3
2 vn−`−2

2

1+un−2
2 vn−1

2
,u2v2

)
(cn+`+1,dn+`+1)

;

thus ∆n+`+1 and Fn+`−1 are blown down to C`+1 = (0,0)(cn+`+1,dn+`+1) for every ` < n− 3. The situation is different
for `= n−3 : whereas ∆2n−2 is still blown down to Cn−2 = (0,0)(c2n−2,d2n−2), the divisor F2n−4 is sent on Mn−3.
One can also note that

(uk+2,vk+2)→

(
un−k−2

k+2 vn−k−2
k+2

1+un−k−2
k+2 vn−k−1

k+2

,uk+2vk+2

)
(rk+2,sk+2)

→ . . .→

(
1

1+un−k−2
k+2 vn−k−1

k+2

,uk+2vk+2

)
(rn,sn)

→

(
−

un−k−3
k+2 vn−k−2

k+2

1+un−k−2
k+2 vn−k−1

k+2

,uk+2vk+2

)
(cn+1,dn+1)

→ . . .→

(
− vk+2

1+un−k−2
k+2 vn−k−1

k+2

,uk+2vk+2

)
(c2n−k−2,d2n−k−2)

so Gk
2n−4−k is sent on Mn−k−3

k for all 1≤ k ≤ n−4.

Finally we blow up Bn−2 at right and Cn−2 at left.
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{
r2n−2 = u2n−1
s2n−2 = u2n−1v2n−1

Ln−2 = {u2n−1 = 0}
{

c2n−2 = a2n−1
d2n−2 = a2n−1b2n−1

Mn−2 = {a2n−1 = 0}

{
r2n−2 = r2n−1s2n−1
s2n−2 = s2n−1

Ln−2 = {s2n−1 = 0}
{

c2n−2 = c2n−1d2n−1
d2n−2 = d2n−1

Mn−2 = {dn−2 = 0}

This yields

Φn : (u2n−1,v2n−1)→ (u2n−1,u2n−1v2n−1)(r2n−2,s2n−2)→
(

1 : (un−1
2n−1vn−2

2n−1−1)v2n−1 : (un−1
2n−1vn−2

2n−1−1)u2n−1v2
2n−1

)
and

Φn : (r2n−1,s2n−1)→ (r2n−1s2n−1,s2n−1)(r2n−2,s2n−2)→
(

r2n−1 : r2n−1sn−1
2n−1−1 : (r2n−1sn−1

2n−1−1)s2n−1

)
.

Thus there is no indeterminacy point and Ln−2 is sent on ∆2n−1. Furthermore,

(y,z)→
(
− yn−1

zn−1 + yn ,
z
y

)
(c2n−1,d2n−1)

so ∆2n−1 is sent on Mn−2.

All these computations yield the following result:

Proposition 2.1. — Let P̂1 (resp. P̂2) denote the point infinitely near P obtained by blowing up P, P1, A1, . . . , An−2, T,
B1, . . . , Bn−3 and Bn−2 (resp. P, P1, A1, . . . , An−2, S, C1, . . . , Cn−3 and Cn−2). The map Φn induces an isomorphism
between BlP̂1

P2 and BlP̂2
P2. The different components are swapped as follows:

∆→Mn−2, E→ E, F→Mn−3, Gn−3→ K, Gn−2→ Gn−2, H→ Gn−3, Ln−3→ F, Ln−2→ ∆,

Gk→Mn−k−3 for 1≤ k ≤ n−4, L`→ Gn−3−` for 1≤ `≤ n−4.

This result is close to ([BK], Proposition 1).

2.2. Second step: gluing conditions. — The gluing conditions reduce to the following problem: if u is a germ of
biholomorphism in a neighborhood of P, find the conditions on u in order that u(P̂2) = P̂1.

Consider a neighborhood of (0,0) in C2 with the coordinates η1, µ1. For every integer d ≥ 1, we introduce an infinitely
near point Ω̂d of length d centered at (0,0) by blowing up successively ω1, . . . , ωd where ωi = (0,0)(ηi,µi), the coordina-
tes (ηi,µi) being given by the formulae ηi = ηi+1µi+1 and µi = µi+1.

Let g(η1,µ1) =

 ∑
(i, j)∈N2

αi, jη
i
1µ j

1, ∑
(i, j)∈N2

βi, jη
i
1µ j

1


(η1,µ1)

be a germ of biholomorphism at (0,0)(η1,µ1). If d is a positive

integer, we define the subset Id of N2 by Id = {(0,0), (0,1), . . . , (0,d−1)}.

Lemma 2.2. — If d is in N∗, g can be lifted to a biholomorphism g̃ in a neighborhood of the exceptional components
in Bl

Ω̂d
C2 if and only if α0,0 = β0,0 = 0 and α0,1 = . . .= α0,d−1 = 0. If these conditions are satisfied, β0,1 6= 0 and g̃ is

given in the coordinates (ηd+1,µd+1) by the formula

g̃(ηd+1,µd+1) =


∑

(i, j)∈Id

αi, jη
i
d+1µd(i−1)+ j

d+1

∑
(i, j)∈I1

βi, jη
i
d+1µdi+ j−1

d+1

, ∑
(i, j)∈I1

βi, jη
i
d+1µdi+ j

d+1


(ηd+1,µd+1)

, |µd+1|< ε, |ηd+1µd+1|< ε.

Proof. — This is straightforward by induction on d.

Fix n≥ 3, then BlP̂1
C2 can be obtained as follows:
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– blow up P ;
– blow up Ω̂n−1 centered at P1 (i.e. η1 = u1, µ1 = v1) ;
– blow up Ω̂n−1 centered at T (i.e. η1 = rn +1, µ1 = sn).

The same holds with P̂2, the point T being replaced by S.

Proposition 2.3. — Let u(y,z) =

 ∑
(i, j)∈N2

mi, jyiz j, ∑
(i, j)∈N2

ni, jyiz j

 be a germ of biholomorphism at P.

– If n = 3, then u can be lifted to a germ of biholomorphism between BlP̂2
P2 and BlP̂1

P2 if and only if
– m0,0 = n0,0 = 0;
– n1,0 = 0;
– m3

1,0 +n2
0,1 = 0;

– n2,0 =
3m0,1n0,1

2m1,0
.

– If n≥ 4, then u can be lifted to a germ of biholomorphism between BlP̂2
P2 and BlP̂1

P2 if and only if
– m0,0 = n0,0 = 0;
– n1,0 = 0;
– mn

1,0 +nn−1
0,1 = 0;

– m0,1 = n2,0 = 0.

Proof. — The first condition is u(P) = P, i.e. m0,0 = n0,0 = 0. The associated lift ũ1 is given by

ũ1(u1,v1) =

 ∑
(i, j)∈I1

mi, ju
i+ j
1 v j

1,

∑
(i, j)∈I1

ni, ju
i+ j−1
1 v j

1

∑
(i, j)∈I1

mi, ju
i+ j−1
1 v j

1


(u1,v1)

.

We must now verify the gluing conditions of Lemma 2.2 for g = ũ1 with d = n− 1. This implies only the condition
n1,0 = 0, since α0, j(ũ1) = 0 for j ≥ 0. After blowing up Ω̂n−1 we get

ũn(rn,sn) =



(
∑

(i, j)∈I1

mi, jri+ j
n s(n−1)(i+ j−1)+ j

n

)n

 ∑
(i, j)∈I1

(i, j)6=(1,0)

mi, jri+ j−1
n s(n−1)(i+ j−1)+ j−1

n


n−1 ,

∑
(i, j)∈I1

(i, j)6=(1,0)

ni, jri+ j−1
n s(n−1)(i+ j−1)+ j

n

∑
(i, j)∈I1

mi, jri+ j−1
n s(n−1)(i+ j−1)+ j

n


(rn,sn)

.

The condition ũn(S) = T is equivalent to
mn

1,0

nn−1
0,1

=−1. In the coordinates (η1,µ1) centered at S and T,

ũn(η1,µ1) = (Γ1(η1,µ1),Γ2(η1,µ1))(η1,µ1)

where

Γ1(η1,µ1) =

(
∑

(i, j)∈I1

mi, j(1+η1)
i+ jµ(n−1)(i+ j−1)+ j

1

)n−1

(
∑

(i, j)∈I1

ni, j(1+η1)
i+ j−1µ(n−1)(i+ j−1)+ j−1

1

)n−1 +1.
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Thus

Γ1(0,µ1) =

(
m1,0 +m0,1µ1 +o(µn−2

1 )
)n

(
n0,1 +n2,0µn−2

1 +o(µn−2
1 )

)n−1 +1.

The higher gluing conditions of Lemma 2.2 for g = ũn with d = n−1 are given by ∂`Γ1
∂µ`1

(0,0) = 0, 1≤ `≤ n−2.

If n = 3, then

Γ1(0,µ1) =

(
m1,0 +m0,1µ1 +o(µ1)

)3

(
n0,1 +n2,0µ1 +o(µ1)

)2 +1 =
m2

1,0

n2
0,1

(
3m0,1−2m1,0

n2,0

n0,1

)
µ1 +o(µ1);

hence the condition is given by n2,0 =
3m0,1n0,1

2m1,0
.

If n≥ 4, then ∂Γ1
∂µ1

(0,0) = n
mn−1

1,0 m0,1

nn−1
0,1

. Since the coefficient m1,0 is nonzero, m0,1 = 0. This implies

Γ(0,µ1) =
n2,0

n0,1
µn−2

1 +o(µn−2
1 ),

so the last condition is n2,0 = 0.

The other computations are quite similar.

2.3. Remarks on degenerate birational quadratic maps. — We can do this construction for n = 2 and find gluing
conditions: a germ of biholomorphism g of C2 around 0 given by

g(y,z) =
(

∑
0≤i, j≤4

mi, jyiz j, ∑
0≤i, j≤4

ni, jyiz j
)

sends P̂2 on P̂1 if and only if m0,0 = n0,0 = 0, n1,0 = 0 and m2
1,0 = n2,0−n0,1.

As we have to blow up P2 at least ten times to get automorphisms with nonzero entropy, we want to find an auto-
morphism ϕ of P2 such that (ϕΦ2)

kϕ(P̂2) = P̂1 with k ≥ 4 and (ϕΦ2)
iϕ(P) 6= P for 0 ≤ i ≤ k− 1. The Taylor series

of (ϕΦ2)
kϕ is of the form (

∑
0≤i, j≤4

mi, jyiz j, ∑
0≤i, j≤4

ni, jyiz j
)
+o
(
||(y,z)||4

)
in the affine chart x = 1. The degrees of the equations increase exponentially with k so even for k = 4 it is not easy to
explicit a family. However we can verify that if

ϕ =

 0 0 −α2

2
0 1 0
1 0 α

 with α in C such that α
8 +2α

6 +4α
4 +8α

2 +16 = 0,

then (ϕΦ2)
4ϕ(P̂2) = P̂1. These examples are conjugate to those studied in [BK09b].

3. Birational maps whose exceptional locus is a line, II

In this section, we apply the results of §2 to produce explicit examples of automorphisms of rational surfaces obtained
from birational maps in the PGL(3;C)-orbit of the Φn. As we have to blow up P2 at least ten times to have nonzero
entropy, we want to find an automorphism ϕ of P2 and a positive integer k such that

(k+1)(2n−1)≥ 10 , (ϕΦn)
k
ϕ(P̂2) = P̂1 and (ϕΦn)

i
ϕ(P) 6= P for 0≤ i≤ k−1. (3.1)

First of all, let us introduce the following definition.
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Definition 3.1. — Let U be an open set of Cd , ϕ : U → PGL(3;C) be a holomorphic map and f be a birational map
of the projective plane. We say that the family of birational maps (ϕα1, ...,αn f )(α1, ...,αn)∈U is locally holomorphically
trivial if for every α0 in U there exists a holomorphic map M from a neighborhood Uα0 of α0 to PGL(3;C) such that
Mα0 = Id and for all α in Uα0 , ϕα f = M−1

α (ϕα0 f )Mα.

3.1. Families of birational maps of degree n with exponential growth conjugate to automorphisms of P2 blown up
in 6n−3 points. — Let ϕ be an automorphism of P2. We will find solutions of (3.1) for n≥ 3 and k = 2.

Remark that the Taylor series of (ϕΦn)
2ϕ is of the form(

∑
0≤i, j≤2n−2

mi, jyiz j, ∑
0≤i, j≤2n−2

ni, jyiz j
)
+o
(
||(y,z)||2n−2

)
in the affine chart x = 1. Assume that (ϕΦn)

2ϕ(P) = P; one can show that this is the case when

ϕα,β =


1 γ − 1+δ+δ2

α

0 −1 0

α β δ

 .
One can verify that the conditions of the Proposition 2.3 are satisfied if β =

αγ

2
and (1+δ)3n =−1.

For 0≤ k ≤ 3n−1, let δk = exp
(
(2k+1)iπ

3n

)
−1. If

ϕα,β =

 1 2β

α
− 1+δk+δ2

k
α

0 −1 0

α β δk

 ,
then (ϕα,βΦn)

2ϕ(P̂2) = P̂1.

Theorem 3.2. — Assume that n≥ 3 and that

ϕα,β =

 1 2β

α
− 1+δk+δ2

k
α

0 −1 0

α β δk

 , α ∈ C∗, β ∈ C, δk = exp
(
(2k+1)iπ

3n

)
−1, 0≤ k ≤ 3n−1.

The map ϕα,βΦn is conjugate to an automorphism of P2 blown up in 3(2n−1) points.

The first dynamical degree of ϕα,βΦn is strictly larger than 1; more precisely λ(ϕα,βΦn) =
n+
√

n2−4
2 .

The family ϕα,βΦn is locally holomorphically trivial.

Proof. — Let ϕ denote ϕα,β. In the basis

{∆, E, F, G1, . . . , Gn−2, H, L1, . . . , Ln−2, ϕE, ϕF, ϕG1, . . . ,ϕGn−2, ϕK, ϕM1 . . . , ϕMn−2,

ϕΦnϕE, ϕΦnϕF, ϕΦnϕG1, . . . , ϕΦnϕGn−2, ϕΦnϕK, ϕΦnϕM1, . . . , ϕΦnϕMn−2}

the matrix M of (ϕΦn)∗ is 
01

tA 01,2n−1 01,2n−1

02n−1,1 B 02n−1 Id2n−1

A C 02n−1 02n−1

02n−1,1 02n−1 Id2n−1 02n−1

 ∈M6n−2

with
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A =


0
...

0
1

 ∈M2n−1,1, B =



0 0 · · · · · · 0 0 1
0 0 · · · · · · 0 0 2
...

...
...

...
...

...
...

...
... n

...
...

...
... n

0 0 · · · · · · 0 0
...

0 0 · · · · · · 0 0 n


∈M2n−1, C =



1 0 · · · · · · 0 0 −1
0 0 · · · · · · 0 1 −2
...

... . .
.

. .
.

0
...

...
... . .

.
. .
.

. .
. ... −n

0 0 . .
.

. .
. ... −n

0 1 0 · · · · · · 0
...

0 0 0 · · · · · · 0 −n


∈M2n−1.

Its characteristic polynomial is (X2−nX +1)(X2−X +1)n−2(X +1)n−1(X2 +X +1)n(X−1)n+1. Hence

λ(ϕΦn) =
n+
√

n2−4
2

which is larger than 1 as n≥ 3.

Fix a point (α0,β0) in C∗×C. We can find locally around (α0,β0) a matrix Mα,β depending holomorphically on (α,β)

such that for all (α,β) near (α0,β0), we have ϕα,βΦn = M−1
α,βϕα0,β0 ΦnMα,β : if µ is a local holomorphic solution of the

equation α = µnα0 such that µ0 = 1 we can take

Mα,β =


1 β−β0µ

µnα0
0

0 1
µn−1 0

0 0 1
µn

 .

Remark 3.3. — Assume that δk =−2 and n is odd. Consider the automorphism A of P2 given by

A = (uy : αx+βy− z : z), α ∈ C∗, β ∈ C, un = α.

One can verify that A(ϕα,βΦn)A−1 = (xzn−1 : zn : xn + zn− yzn−1) which is of the form of (0.1).

3.2. Families of birational maps of degree n with exponential growth conjugate to automorphisms of P2 blown up in
4n−2 points. — In this section we will assume that n is larger than 4. In that case, we succeed in providing solutions
of (3.1) for k = 1.

Proposition 2.3 allows us to establish the following statement.

Theorem 3.4. — Assume that n≥ 4 and

ϕα,β,γ,δ =

 α β
β(γ2εk−α2)

δ(α−γ)

0 γ 0
δ(α−γ)

β
δ −α

 , α, β ∈ C, γ, δ ∈ C∗, α 6= γ, εk = exp
(
(2k+1)iπ

n

)
, 0≤ k ≤ n−1.

The map ϕα,β,γ,δΦn is conjugate to an automorphism of P2 blown up in 4n−2 points.

The first dynamical degree of ϕα,β,γ,δΦn is strictly larger than 1; more precisely λ(ϕα,β,γ,δΦn) =
(n−1)+

√
(n−1)2−4

2 .

The family ϕα,β,γ,δΦn is locally holomorphically trivial.

Proof. — Let ϕ denote ϕα,β,γ,δ.
In the basis

{∆, E, F, G1, . . . , Gn−2, H, L1, . . . , Ln−2, ϕE, ϕF, ϕG1, . . . ,ϕGn−2, ϕK, ϕM1 . . . , ϕMn−2}
the matrix M of (ϕΦn)∗ is  01

tA 01,2n−1

02n−1,1 B Id2n−1

A C 02n−1

 ∈M4n−1
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where

A =


0
...

0
1

 ∈M2n−1,1, B =



0 0 · · · · · · 0 0 1
0 0 · · · · · · 0 0 2
...

...
...

...
...

...
...

...
... n

...
...

...
... n

0 0 · · · · · · 0 0
...

0 0 · · · · · · 0 0 n


∈M2n−1, C =



1 0 · · · · · · 0 0 −1
0 0 · · · · · · 0 1 −2
...

... . .
.

. .
.

0
...

...
... . .

.
. .
.

. .
. ... −n

0 0 . .
.

. .
. ... −n

0 1 0 · · · · · · 0
...

0 0 0 · · · · · · 0 −n


∈M2n−1.

Its characteristic polynomial is (X2− (n−1)X +1)(X2 +1)n−2(X +1)n−1(X−1)n+1. Hence

λ(ϕΦn) =
(n−1)+

√
(n−1)2−4

2

which is larger than 1 as n≥ 4.

Fix a point (α0,β0,γ0,δ0) in C×C×C∗×C∗ such that α0 6= γ0. We can find locally around (α0,β0,γ0,δ0) a ma-
trix Mα,β,γ,δ depending holomorphically on (α,β,γ,δ) such that for all (α,β,γ,δ) near (α0,β0,γ0,δ0), we have

ϕα,β,γ,δΦn = M−1
α,β,γ,δϕα0,β0,γ0,δ0ΦnMα,β,γ,δ :

if µ is a local holomorphic solution of the equation β =
µnβ0γ0 δ(γ−α)

γδ0(γ0−α0)
such that µ0 = 0, we can take

Mα,β,γ,δ =

 1 A B
0 µn−1 0
0 0 µn

 , where A =
β0µn−1(γδ0−µγ0 δ)

γδ0(γ0−α0)
and B =

β0µn(α0γ−αγ0)

γδ0(α0− γ0)
.

Remark 3.5. — Consider the automorphism A of P2 given by

A = (uy : δ(α− γ)x+βδy−αβz : εkβγz), α, β ∈ C, γ, δ ∈ C∗, α 6= γ, un = (α− γ)εn
kγ

n−1
β

n−1
δ.

One can verify that A(ϕα,β,γ,δΦn)A−1 = (xzn−1 : zn : xn + εkyzn−1) which is of the form of (0.1).

3.3. An example in degree 3 with indeterminacy points not aligned. —

Theorem 3.6. — Let ϕα be the automorphism of the complex projective plane given by

ϕα =

 α 2(1−α) 2+α−α2

−1 0 α+1
1 −2 1−α

 , α ∈ C\{0, 1}.

The map ϕαΦ3 has no invariant line and is conjugate to an automorphism of P2 blown up in 15 points.
The first dynamical degree of ϕαΦ3 is 3+

√
5

2 > 1.

The family ϕαΦ3 is locally holomorphically trivial.

Remark 3.7. — The three points P, ϕα(P) and ϕαΦ3ϕα(P) are not aligned in the complex projective plane. Indeed,
P = (1 : 0 : 0), ϕα(P) = (α :−1 : 1) and ϕαΦ3ϕα(P) = (α : 1 : 1).
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Proof. — The first assertion is given by a direct computation and Proposition 2.3, the second by Theorem 3.2.

Fix a point α0 in C\{0, 1}. We can find locally around α0 a matrix Mα depending holomorphically on α such that for
all α near α0, we have ϕαΦ3 = M−1

α ϕα0Φ3Mα : it suffices to take

Mα =

 1 0 α0−α

0 1 0
0 0 1

 .

3.4. A conjecture. — Let us recall a question which was communicated to the first author by E. Bedford:

Does there exist a birational map of the projective plane f such that for all ϕ in PGL(3;C), the map ϕ f is not birationally
conjugate to an automorphism with positive entropy?

We do not know at the present time the answer to this question. However, after a long series of examples, it seems that
the birational maps Φn satisfy a rigidity property:

Conjecture. — Let U be an open set of Cd , n be an integer greater than or equal to three and ϕα be a holomorphic
family of matrices in PGL(3;C) parameterized by U. Assume that there exists a positive integer k such that

(k+1)(2n−1)≥ 10, (ϕαΦn)
i
ϕα(P) 6= P for 0≤ i≤ k−1 and (ϕαΦn)

k
ϕα(P̂2) = P̂1.

Then (ϕαΦn)α∈U is holomorphically trivial.

Let us remark that the maps of the form (0.1) don’t satisfy this conjecture: for n = 6 the family fa is not holomorphically
trivial and one can verify that for any nonzero complex number s,

A fa = fa/s3B, where A =
(

sx : y : c(1− s6)y+ s6z
)

and B = (sx : s6y : z).

4. A birational cubic map blowing down one conic and one line

Let f denote the following birational map

f =
(

y2z : x(xz+ y2) : y(xz+ y2)
)

;

it blows up two points and blows down two curves, more precisely

Ind f = {R = (1 : 0 : 0), P = (0 : 0 : 1)}, Exc f =
(

C = {xz+ y2 = 0}
)
∪
(

∆
′ = {y = 0}

)
.

One can verify that f−1 =
(

y(z2− xy) : z(z2− xy) : xz2
)

and

Ind f−1 = {Q = (0 : 1 : 0), R}, Exc f−1 =
(

C ′ = {z2− xy = 0}
)
∪
(

∆
′′ = {z = 0}

)
.

First we blow up R at left and right. We set{
y = u1 E = {u1 = 0}
z = u1v1

{
y = r1s1 E = {s1 = 0}
z = s1 ∆′1 = {r1 = 0}

where E is the exceptional divisor.

We have

f : (u1,v1)→ (u1,u1v1)(y,z)→
(

u2
1v1 : u1 + v1 : u1(u1 + v1)

)
→
(

u1 + v1

u2
1v1

,
u1 + v1

u1v1

)
(y,z)
→
(

u1 + v1

u2
1v1

,u1

)
(u1,v1)

and

f : (r1,s1)→ (r1s1,s1)(y,z)→
(

r2
1s2

1 : 1+ r2
1s1 : r1s1(1+ r2

1s1)
)
→
(

1+ r2
1s1

r2
1s2

1
,

1+ r2
1s1

r1s1

)
(y,z)
→
(

1
r1s1

,
1+ r2

1s1

r1s1

)
(r1,s1)

.
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Hence C1 = {u1+v1 = 0} is sent on E, E is blown down to Q = (0 : 1 : 0) and S = (0,0)(u1,v1) is an indeterminacy point.

Next we blow up P at left and Q at right:{
x = u2 F = {u2 = 0}
y = u2v2

{
x = a2 G = {a2 = 0}
z = a2b2{

x = r2s2 F = {s2 = 0}
y = s2

{
x = c2d2 G = {d2 = 0}
z = d2

One can verify that

f : (u2,v2)→ (u2,u2v2)(x,y)→
(

v2
2 : 1+u2v2

2 : v2(1+u2v2
2)
)
=

(
v2

1+u2v2
2
,

1
v2

)
(x,y)

,

f : (r2,s2)→ (r2s2,s2)(x,y)→
(

1 : r2(r2 + s2) : r2 + s2

)
and

f : (u1,v1)→
(

u2
1v1 : u1 + v1 : u1(u1 + v1)

)
=

(
u2

1v1

u1 + v1
,u1

)
(x,z)
→
(

u1v1

u1 + v1
,u1

)
(c2,d2)

.

In particular F is sent on C ′2 and E1 is blown down to T = (0,0)(c2,d2). Moreover,

(x,y)→
(

y2 : x(x+ y2) : y(x+ y2)
)
→
(

y2

x(x+ y2)
,

y
x

)
(x,z)
→
(

y
x+ y2 ,

y
x

)
(c2,d2)

so that ∆′2 is blown down to T.
Then we blow up S at left and T at right{

u1 = u3 H = {u3 = 0}
v1 = u3v3

{
c2 = a3 K = {a3 = 0}
d2 = a3b3{

u1 = r3s3 H = {s3 = 0}
v1 = s3

{
c2 = c3d3 K = {d3 = 0}
d2 = d3

We compute:

f : (u3,v3)→ (u3,u3v3)(u1,v1)→
(

u2
3v3 : 1+ v3 : u3(1+ v3)

)
→
(

u2
3v3

1+ v3
,u3

)
(x,z)

→
(

u3v3

1+ v3
,u3

)
(c2,d2)

→
(

v3

1+ v3
,u3

)
(c3,d3)

and

f : (u1,v1)→
(

u1v1

u1 + v1
,u1

)
(c1,d1)

→
(

v1

u1 + v1
,u1

)
(c3,d3)

.

Thus H is sent on K, E2 is blown down to V = (1,0)(c3,d3) and U = (0,−1)(u3,v3) is an indeterminacy point. One can
also remark that

(x,y)→
(

y
x+ y2 ,

y
x

)
(c2,d2)

→
(

x
x+ y2 ,

y
x

)
(c3,d3)

so ∆′3 is blown down to V.

We will now blow up U at left and V at right{
u3 = u4 L = {u4 = 0}
v3 = u4v4−1

{
c3 = a4 +1 M = {a4 = 0}
d3 = a4b4
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{
u3 = r4s4 L = {s4 = 0}
v3 = s4−1

{
c3 = c4d4 +1 M = {d4 = 0}
d3 = d4

We get

f : (u4,v4)→ (u4,u4v4−1)(u3,v3)→
(

u4(u4v4−1) : v4 : u4v4

)
→
(

u4(u4v4−1)
v4

,u4

)
(x,z)
→
(

u4v4−1
v4

,u4

)
(c2,d2)

,

f : (r4,s4)→ (r4s4,s4−1)(u3,v3)→
(

r2
4s4(s4−1) : 1 : r4s4

)
and

f : (u1,v1)→
(

v1

u1 + v1
,u1

)
(c3,d3)

→
(
− 1

u1 + v1
,u1

)
(c4,d4)

;

therefore Y = (0,0)(u4,v4) is an indeterminacy point, L is sent on G2 and E3 on M.
Furthermore

f : (x,y)→
(

x
x+ y2 ,

y
x

)
(c3,d3)

→
(
− xy

x+ y2 ,
y
x

)
(c4,d4)

i.e. ∆′4 is blown down to Z = (0,0)(c4,d4).

Finally we blow up Y at left and Z at right{
u4 = u5 N = {u5 = 0}
v4 = u5v5

{
c4 = a5 Ω = {a5 = 0}
d4 = a5b5{

u4 = r5s5 N = {s5 = 0}
v4 = s5

{
c4 = c5d5 Ω = {d5 = 0}
d4 = d5

Hence ∆′5 is sent on Ω and N on ∆′′5 .

Proposition 4.1. — Let P̂1 (resp. P̂2) denote the point infinitely near R (resp. Q) obtained by blowing up R, S,U and Y
(resp. Q, T, V and Z). The map f induces an isomorphism between BlP̂1,P

P2 and BlP̂2,R
P2. The different components

are swapped as follows:

C → E, F→ C ′, H→ K, L→ G, E→M, ∆
′→Ω, N→ ∆

′′.

The following statement gives the gluing conditions.

Proposition 4.2. — Let u(x,z) =

 ∑
(i, j)∈N2

mi, jxiz j, ∑
(i, j)∈N2

ni, jxiz j

 be a germ of biholomorphism at Q.

Then u can be lifted to a germ of biholomorphism between BlP̂2
P2 and BlP̂1

P2 if and only if
– m0,0 = n0,0 = 0;
– n0,1 = 0;
– n0,2 +n1,0 +m2

0,1 = 0;
– n0,3 +n1,1 +2m0,1(m0,2 +m1,0) = 0.

Let ϕ be an automorphism of P2. We will adjust ϕ such that (ϕ f )kϕ sends P̂2 onto P̂1 and R onto P. As we have
to blow up P2 at least ten times to have nonzero entropy, k must be larger than two, {P̂1, ϕP̂2, ϕ f ϕP̂2, (ϕ f )2ϕP̂2, . . . ,
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(ϕ f )k−1ϕP̂2}must all have distinct supports and (ϕ f )kϕP̂2 = P̂1. We provide such matrices for k = 3 : by Proposition 4.2
one can verify that for every nonzero complex number α,

ϕα =


2α3

343 (37i
√

3+3) α − 2α2

49 (5i
√

3+11)

α2

49 (−15+11i
√

3) 1 − α

14 (5i
√

3+11)

−α

7 (2i
√

3+3) 0 0


is such a ϕ.

Theorem 4.3. — Assume that f =
(

y2z : x(xz+ y2) : y(xz+ y2)
)

and that

ϕα =


2α3

343 (37i
√

3+3) α − 2α2

49 (5i
√

3+11)

α2

49 (−15+11i
√

3) 1 − α

14 (5i
√

3+11)

−α

7 (2i
√

3+3) 0 0

 , α ∈ C∗.

The map ϕα f is conjugate to an automorphism of P2 blown up in 15 points.
The first dynamical degree of ϕα f is λ(ϕα f ) = 3+

√
5

2 .
The family ϕα f is locally holomorphically trivial.

Proof. — Set ϕ = ϕα. In the basis

{∆′, E, F, H, L, N, ϕE, ϕG, ϕK, ϕM, ϕΩ, ϕ f ϕE, ϕ f ϕG, ϕ f ϕK, ϕ f ϕM, ϕ f ϕΩ}

the matrix M of (ϕ f )∗ is 

0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 −2 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 −3 0 0 −1 0 0 0 0 0 0 0 0 0 0
1 0 −4 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0



.

Its characteristic polynomial is (X−1)4(X +1)2(X2−X +1)(X2 +X +1)3(X2−3X +1). Hence λ(ϕ f ) = 3+
√

5
2 .

Fix a point α0 in C∗. We can find locally around α0 a matrix Mα depending holomorphically on α such that for all α

near α0, we have ϕα f = M−1
α ϕα0 f Mα : take

Mα =

 1 0 0
0 α

α0
0

0 0 α2

α2
0

 .
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5. Families of rational surfaces

Families of rational surfaces are usually constructed by blowing up P2 (or a Hirzebruch surface Fn) successively at N
points p1, . . . , pN and then by deforming the points pi. Such deformations can be holomorphically trivial: the simplest
example is given by the family BlMt p1,...,Mt pNP2, where p1, . . . , pN are N distinct points in P2 and t 7→Mt is a holomor-
phic curve in PGL(3;C) such that M0 = Id. In this section, our first aim is to describe deformations of rational surfaces,
using the general theory of Kodaira and Spencer ([Kod86]). Then, after a general digression about the generic numbers
of parameters of an algebraic deformation, we will give a practical way to count the generic number of parameters of a
given family of rational surfaces with no holomorphic vector field.

5.1. Deformations of basic rational surfaces. — Recall that every rational surface can be obtained by blowing up finitely
many times P2 of a Hirzebruch surface Fn (see [GH94]). A rational surface is called basic if it is a blowup of P2. By
([Nag60], Theorem 5), if f is an automorphism of a rational surface X such that f ∗ is of infinite order on Pic(X), then X
is basic. Furthermore, by the main result of [Har87], X carries no nonzero holomorphic vector field.

For each integer N, let us define a sequence of deformations πN : XN → SN as follows:
– S0 is a point and X0 = P2.
– SN+1 = XN ; XN+1 = BlXN (XN ×SN XN), where XN is diagonally embedded in XN ×SN XN ; and πN+1 is obtained

by composing the blow up morphism from XN+1 to XN×SN XN with the first projection.

The varieties SN and XN are smooth and projective, they can be given the following geometric interpretation:
– For N ≥ 1, SN is the set of ordered lists of (possibly infinitely near) points of P2 of length N. This means that

SN = {p1, . . . , pN such that p1 ∈ P2 and if 2≤ i≤ N, pi ∈ Blpi−1Blpi−2 . . .Blp1P
2}.

Elements of SN will be denoted by P̂.
– For N ≥ 1, XN is the universal family of rational surfaces over SN : for every P̂ in SN , the fiber π

−1
N (P̂) of P̂ in XN

is the rational surface BlP̂P
2 parameterized by P̂.

The group PGL(3;C) of biholomorphisms of P2 acts naturally on the configuration spaces SN . If g is an element
of PGL(3;C) and P̂ lies in SN , g.P̂ is the unique element of SN such that g induces an isomorphism between BlP̂P

2

and Blg.P̂P
2. Furthermore, if P̂ is a point in SN and GP̂ is the stabilizer of P̂ in PGL(3;C), the Lie algebra of GP̂ is the

vector space of holomorphic vector fields on BlP̂P
2.

In the sequel, for every integer N ≥ 4, we will denote by S†
N the Zariski-dense open subset of SN consisting of points P̂

in SN such that GP̂ is trivial. The associated rational surfaces {BlP̂P
2, P̂ ∈ S†

N} are rational surfaces in the family XN

carrying no nonzero holomorphic vector field. Besides, the action of PGL(3;C) defines a regular foliation on S†
N .

For any point P̂ in SN , let OP̂ be the PGL(3;C)-orbit of P̂ in SN .

Theorem 5.1. — For any point P̂ in SN , the kernel of the Kodaira-Spencer map of XN at P̂ is equal to TP̂ OP̂.

Before giving the proof, we start by some generalities. Let (X,π,B) be a deformation and b be a point in B. Recall
that X is complete at b if any small deformation of Xb is locally induced by X via a holomorphic map. Let us quote two
fundamental results in deformation theory (see [Kod86], p. 270 and 284):

(i) Theorem of existence. Let X be a complex compact manifold such that H2(X ,TX) = 0. Then there exists a
deformation (X,π,B) of X such that X0 = X and KS0(X) : T0B→ H1(X ,TX) is an isomorphism.

(ii) Theorem of completeness. Let (X,π,B) be a deformation and b be in B such that KSb(X) : TbB→ H1(Xb,TXb)
is surjective. Then X is complete at b.

As a consequence, if (X,π,B) is a deformation which is complete at a point b of B and such that H2(Xb,TXb) = 0, then
KSb(X) is surjective.
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Definition 5.2. — Let (X,π,B) be a deformation. The blown up deformation X̂ is a deformation over X defined by
X̂= BlX(X×BX), where X is diagonally embedded in X×BX. The projection from X̂ to X is induced by the projection
on the first factor.

Thus, for any x in X, X̂x = Blx(Xb), where b = π(x). The following result is originally due to Fujiki and Nakano and in
a more general setting to Horikawa:

Proposition 5.3 ([FN72, Hor76]). — Let (X,π,B) be a deformation, b be a point of B and assume that X is complete
at b. Then the blown up deformation X̂ is complete at any point of Xb.

Remark that for every integer N, X̂N = XN+1. Since X0 is complete, it follows by induction that for every integer N,
XN is complete at any point of SN .

Lemma 5.4. — Let X be a rational surface obtained from the projective plane P2 via N+ blow up and N− blow down.
If N = N+−N−, then

– h1(X ,TX) = h0(X ,TX)+2N−8;
– h2(X ,TX) = 0.

Proof. — See [Kod86], p. 220.

The second statement of the previous lemma together with the completeness of XN implies that the Kodaira-Spencer
map of XN is surjective at any point of SN .

Proof of Theorem 5.1. — Let N be a positive integer and P̂ a point in SN . Since the restriction of XN on OP̂ is trivial,
kerKSP̂(XN) contains TP̂ OP̂. Let us compute the dimension of TP̂ OP̂. If GP̂ is the stabilizer of P̂ in PGL(3;C), one has
an exact sequence

0−→ Lie(GP̂)−→ Lie(PGL(3;C))−→ TP̂ OP̂ −→ 0.

Thus dim(TP̂ OP̂) = 8−h0(X ,TX). Otherwise, since KSP̂(XN) is surjective, we get

dim(kerKSP̂(XN)) = 2N−h1(X ,TX) = 8−h0(X ,TX)

by the first assertion of Lemma 5.4.

Remark that if N ≥ 4, the kernels of the Kodaira-Spencer maps of XN define a holomorphic vector bundle of rank eight
on S†

N , which is the tangent bundle of the regular foliation defined by the PGL(3;C)-action on S†
N .

We will also discuss deformations of nonbasic rational surfaces in §5.4.

5.2. Generic numbers of parameters of an algebraic deformation. — In the section, we define the generic numbers
of parameters of an algebraic deformation. Recall that a deformation (X,π,B) is algebraic if there exists an embedding
i : X→ B×PN such that π is induced by the first projection of B×PN . If X is algebraic, the fibers (Xb)b∈B are complex
projective varieties.

Proposition 5.5. — Let (X,π,B) be an algebraic deformation. Then there exist a proper analytic subset Z of B and a
holomorphic vector bundle E on U = B\Z such that:

– E is a holomorphic subbundle of TU ;
– the function b 7→ h1(Xb,TXb) is constant on U ;
– for all b in B, E|b is the kernel of KSb(X).

Proof. — Let TrelX be the relative tangent bundle of X defined by the exact sequence

0→ TrelX→ TX→ π
∗TB→ 0,

where the last map is the differential of π. The connection morphism µ : TB ' R0π∗(π
∗TB)→ R1π∗TrelX induces for

every b in B a map
µb : TbB−→ (R1

π∗TXrel)|b −→ H1(Xb,TXb)
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which is exactly the Kodaira-Spencer map of X at b (see [Voi07], p. 219). Since the deformation X is algebraic, there
exists a complex E• of vector bundles on B such that for every b in B, H1(Xb,TXb) is the cohomology in degree one of
the complex E|b (see [Voi07], p. 220). This implies that the function b 7→ dimH1(Xb,TXb) is constant outside a proper
analytic subset Z of B. By Grauert’s theorem ([Har77], p. 288), R1π∗TXrel is locally free on U = B\Z and for every b
in U, the base change morphism from R1π∗TXrel

|b to H1(Xb,TXb) is an isomorphism. After removing again a proper
analytic subset in U, we can assume that µ has constant rank on U, so that its kernel is a holomorphic vector bundle.

This being done, the definition of the generic number of parameters of an algebraic deformation runs as follows:

Definition 5.6. — The number m(X) = dimB− rankE is called the generic number of parameters of X.

Remark 5.7. — (i) Recall that a deformation (X,π,B) is called effectively parameterized (resp. generically effec-
tively parameterized) if for every b in B (resp. for every generic b in B), the Kodaira-Spencer map KSb(X) :
TbB→ H1(Xb,TXb) is injective (see [Kod86], p. 215). By Proposition 5.5, an algebraic deformation (X,π,B) is
generically effectively parameterized if and only if m(X) = dimB.

(ii) By Theorem 5.1, for any integer N ≥ 4, m(XN) = 2N−8.

5.3. How to count parameters in a family of rational surfaces?— Let Y be a family of rational surfaces parameterized
by an open set U of Cn. Since the deformations XN are complete, we can suppose that Y is obtained by pulling back
the deformation XN by a holomorphic map ψ : U → SN . We will make the assumption that the fibers of Y have no
holomorphic vector field, so that ψ takes its values in S†

N . In this situation, we are able to compute the numbers of
parameters of such a family quite simply:

Theorem 5.8. — Let U be an open set in Cn, N be an integer greater than or equal to 4 and ψ : U → S†
N be a holomor-

phic map. Then m(ψ∗XN) is the smallest integer d such that for all generic α in U, there exist a neighborhood Ω of 0 in
Cn−d and two holomorphic maps γ : Ω→U and M : Ω→ PGL(3;C) such that:

– γ∗(0) is injective,
– γ(0) = α and M(0) = Id,
– for all t in Ω, ψ(γ( t)) = M( t)ψ(α).

Proof. — Let α be a generic point in U, Uα be a small neighborhood of α and Zα = ψ(Uα); Zα is a smooth complex
submanifold of S†

N passing through ψ(α). The rank of ψ is generically constant, so that after a holomorphic change of
coordinates, we can suppose that Uα = Vα×Zα and that ψ is the projection on the second factor. If (v,z) is a point of
Vα×Zα, the kernel of KS(v,z)(ψ

∗XN) is the set of vectors (h,k) in TvVα⊕TzZα such that k is tangent to the orbit Oz. If
α is sufficiently generic, these kernels define a holomorphic subbundle of T(Vα×Zα) of rank n−m(ψ∗XN), which is
obviously integrable because the PGL(3;C)-orbits in S†

N define a regular foliation. Let Vα×Tα be the associated germ of
integral manifold passing through α. For every point z in Tα, TzTα is included in TzOz. Thus Tα is completely included
in the orbit Oψ(α). Let γ be a local parametrization of Vα×Tα. As the natural orbit map from PGL(3;C) to Oψ(α) is a
holomorphic submersion, we can choose locally around ψ(α) a holomorphic section s such that s(ψ(α)) = Id. If we
define M( t) = s[γ(t)], then γ( t) = M( t)ψ(α).

Conversely, let α be a generic point in U, d be an integer and (γ, M) satisfying the hypotheses of the theorem. The
image of γ defines a germ of smooth subvariety Yα in U passing through α, and its image by ψ is entirely contained in
the orbit Oψ(α). This implies that the restriction of ψ∗(XN) to Yα is holomorphically trivial. Thus TαYα is contained in
the kernel of KSα(ψ

∗XN). Since dimYα = n−d, we obtain m(ψ∗XN)≤ d.

5.4. Nonbasic rational surfaces. — We will briefly explain how to adapt the methods developed above to nonbasic
rational surfaces, although we won’t need it in the paper. The situation is more subtle, even for Hirzebruch surfaces.
Indeed, if n ≥ 2, Aut(Fn) has dimension n + 5 (see [Bea78]) so that h1(Fn,TFn) = n− 1 and h2(Fn,TFn) = 0 by
Lemma 5.4. Therefore the Hirzebruch surfaces Fn are not rigid if n ≥ 2. Complete deformations of Hirzebruch sur-
faces (Fn)n≥2 are known and come from flat deformations of rank-two holomorphic bundles on P1(C) (see [Man04],
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Chap. II). These deformations (Fn)n≥2 are highly noneffective because their generic number of parameters is zero. The
fibers of Fn are Hirzebruch surfaces Fn−2k of smaller index.

The deformations of nonbasic rational surfaces can be explicitly described using the same method as in §5.1: for every
integer n ≥ 2, define inductively a sequence of deformations π̃N,n : FN,n → SN,n by F0,n = Fn and FN+1,n = F̂N,n (cf
Definition 5.2). This means that

SN,n = {a, p1, . . . , pN |a ∈ Fn, p1 ∈ (Fn)a, p2 ∈ Blp1(Fn)a, . . . , pN ∈ BlpN−1 . . .Blp1(Fn)a}
and that (FN,n)a, p1,...,pN = BlpN . . .Blp1(Fn)a.

If X = BlP̂Fn is a nonbasic rational surface, then P̂ defines a point in SN,n for a certain integer N. By Proposition 5.3,
FN,n is complete at P̂. Therefore small deformations of a nonbasic rational surface can be parameterized by (possibly
infinitely near) points on Hirzebruch surfaces Fn, but n can jump with the deformation parameters.
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